ScienceSDS: A Novel Software Defined Security Framework for Large-scale Data-intensive Science

WORKSHOP
Deepak Nadig Anantha and Byrav Ramamurthy
Proceedings of the ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization
Publication year: 2017

Abstract: Experimental science workflows from projects such as Compact Muon Solenoid (CMS) and Laser Interferometer Gravitational Wave Observatory (LIGO) are characterized by data-intensive computational tasks over large datasets transferred over encrypted channels. The Science DMZ approach to network design favors lossless packet forwarding through a separate isolated network over secure lossy forwarding through stateful packet processors (e.g. firewalls). We propose ScienceSDS, a novel software defined security framework for securely monitoring large-scale science datasets over a software defined networking and network functions virtualization (SDN/NFV) infrastructure.

Differentiated Network Services for Data-intensive Science using Application-aware SDN

CONFERENCE
Deepak Nadig, Byrav Ramamurthy, Brian Bockelman and David Swanson
IEEE International Conference on Advanced Networks and Telecommunications Systems (IEEE ANTS 2017)
Publication year: 2017

Abstract: Data-intensive science projects rely on scalable, high-performance, fault-tolerant protocols for transferring large-volume data over a high-bandwidth, high-delay wide area network (WAN). The commonly used protocol for WAN data distribution is the GridFTP protocol. GridFTP uses encrypted sessions for data transfers and does not exchange any information with the network-layer resulting in reduced flexibility for network management at the site-level. We propose an application-aware software-defined networking (SDN) approach for providing differentiated network services for high-energy physics projects such as Compact Muon Solenoid (CMS) and Laser Interferometer Gravitational-Wave Observatory (LIGO). We demonstrate a policy-driven approach for differentiating network traffic by exploiting application- and network-layer collaboration to achieve accurate accounting of resources used by each project. We implement two strategies, a 7-3 queuing system, and a 10-3 queuing system, and show that the 10-3 strategy provides an additional capacity improvement of 11.74% over the 7-3 strategy.

SNAG: SDN-managed Network Architecture for GridFTP Transfers

WORKSHOP
Deepak Nadig Anantha, Zhe Zhang, Byrav Ramamurthy, Brian Bockelman, Garhan Attebury and David Swanson
Proceedings of the Third Workshop on Innovating the Network for Data-Intensive Science, INDIS '16
Publication year: 2016

Abstract: Software Defined Networking (SDN) is driving transformations in Research and Education (R&E) networks, enabling innovations in network research, enhancing network performance, and providing security through a policy-driven network management framework. The Holland Computing Center (HCC) at the University of Nebraska-Lincoln (UNL) supports scientists studying large datasets, and has identified a need for flexibility in network management and security, particularly with respect to identifying data flows. This problem is addressed through the deployment of a production SDN with a focus on integrating network resource management for large-scale GridFTP data transfers. We propose SNAG (SDN-managed Network Architecture for GridFTP transfers), an architecture that enables the SDN-based network management of GridFTP file transfers for large-scale science datasets. We also show how SNAG can efficiently and securely identify science dataset transfers from projects such as Compact Muon Solenoid (CMS) and Laser Interferometer Gravitational-Wave Observatory (LIGO). We focus on exposing an Application Program Interface (API) between the trusted GridFTP process and the network layer allowing the network to track flows via application metadata.

Radio Propagation Models for Coverage Analysis and Planning of Wireless MANs

CONFERENCE
Deepak Nadig Anantha et. al.
Proceedings of International Conference on Electronics and Communication Engineering, Apr 2013, Bangalore, INDIA
Publication year: 2013

Development of Long Term Evolution (LTE) Testbed for Evaluation of Femto/Macro Cell Systems

CONFERENCE
Deepak Nadig Anantha et. al.
Proceedings of International Conference on Electronics and Communication Engineering, Apr 2013, Bangalore, INDIA
Publication year: 2013

On the MAC Layer Jamming Techniques for IEEE 802.11e based Wireless Ad-hoc Networks

CONFERENCE
Deepak Nadig Anantha et. al.
Proceedings of the International Conference on Computer Modeling and Simulation (ICCMS 2011), Mumbai, INDIA Jan 7 – 9th, 2011.
Publication year: 2011

Abstract— Security forms an important part of wireless network communication systems. A wide variety of attacks can be performed on IEEE 802.11 MAC thereby compromising the security of the system and also leading to degradation of the system performance. The security attacks can be classified into different categories based on criteria/nature of the attack, domain or attack techniques used. In this work we study the performance of IEEE 802.11 MAC with CSMA/CA systems under various jamming attacks. The study will comprise of simulation of jamming attacks and its effect on various system parameters like throughput, latency, offered load, etc.

Simulation and Analysis of Intersystem Handovers in Mobile WiMax Networks

TECHNICAL REPORT
Deepak Nadig Anantha, Manu Vyasa Rao & Rakshak Agrawal
Technical Report, Dec 2008.
Publication year: 2008

Abstract—4th generation networks postulate high speed ubiquitous coverage for all types of mobility which in turn demands seamless handover of connectivity from one network to another. This has necessitated a detailed performance study of handover among homogeneous and heterogeneous networks. This document summarizes our analysis of various types of handoffs among wireless networks. A detailed study of two poplar wireless access networks namely, WiMax(802.16) and WLAN(802.11) has been performed and the handover mechanisms among them have been studied. To this end, we have analyzed performance of two types of handoffs – horizontal handoff between two homogeneous networks (WLAN-WLAN or WiMax-WiMax) and vertical handoff between two heterogeneous networks (WLAN-WiMax). In order to study the performance of vertical handoff, IEEE 802.21 Media Independent Handover has been employed. Metrics like Average handoff distances for varying power threshold in layer 2 and 3 and packet drop rate for varying speed have been studied and conclusions have been drawn for different scenarios.
Keywords: IEEE802.11e, IEEE802.16, IEEE802.21 Media Independent Handover,Intersystem Handover.

A Study of Jamming in IEEE 802.11e Networks

TECHNICAL REPORT
Deepak Nadig Anantha
Technical Report, Dec 2008.
Publication year: 2008

Abstract—Security forms an important part of wireless network communication system. A variety of attacks can be performed on 802.11 MAC thereby compromising the security of the system and also leading to degradation of the system performance. The security attacks can be classified into different categories based on criteria nature of the attack, domain or attack techniques used. In this work we study the performance of IEEE 802.11 MAC with CSMA/CA systems under various jamming attacks. The study will comprise of simulation of jamming attacks and its effect on various system parameters like throughput, latency, offered load, etc.
Keywords—802.11 DCF, 802.11 EDCA, Jamming attacks.

Performance Analysis and Evaluation of Delay-Tolerant Network Bundling Protocol on a Scalable Virtual Network Test Platform

CONFERENCE
Deepak Nadig Anantha et. al.
Wireless, Mobile and Multimedia Networks, 2008. IET International Conference on , vol., no., pp.52,55, 11-12 Jan. 2008
Publication year: 2008

Abstract: The use of Internet protocol suite of TCP/UDP in environments characterized by high delay and high link error rates result in significant degradation of the Protocol performance. The DTN bundle protocol can be used in such scenarios. Performance evaluation of delay-tolerant network bundle protocol in a live network is difficult due to the absence of networks characterized by extreme environs. Control on specific performance metrics like link delay, bandwidth, connectivity, traffic flow and queue sizes are thus rendered impossible without the incorporation of a control system either in software implementation or network hardware. The control over specific environments in real- world deployments and the analysis of the protocol deployment in the above provides an understanding into the performance of the bundling protocol in harsh networking environments. This paper presents the analysis and evaluation of performance of a delay-tolerant network in a virtual test platform setup.

Keywords: Internet, delays, transport protocols, Internet protocol, TCP/UDP, delay-tolerant network bundling protocol, scalable virtual network.

Design and Deployment of DTN Architectures and Protocols for Interplanetary Communication Systems

THESIS
Deepak Nadig Anantha
Masters’ Thesis, RV College of Engineering, Visveswaraya Technological University, Jul 2007.
Publication year: 2007

Abstract—The evolutions in space technologies are facilitating the realization of scientific deep space missions. Unpredictable link reliability, network connectivity, large round trip times (RTT) and wide variations in transmission latencies are characteristics of such networks. This could pose significant problems for deep space missions. Also the present day Internet protocols are ill suited for the purpose of deep space missions as performance deteriorates quickly under the above above-mentioned conditions. The work undertaken ndertaken presents a delay-tolerant network (DTN) communication system architectural design, design and modeling of DTN Bundle Protocol and Characterization, Analysis and Performance evaluation of such networks.