
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
60	
61	
62	
63	
64	
65	

Cache Management for Large Data Transfers in
Named Data Networking using SDN

Mohammad Alhowaidi, Deepak Nadig and Byrav Ramamurthy
Dept. of Computer Science & Engg, University of Nebraska-Lincoln, Lincoln, NE 68588-0115, USA.

Email: {malhowai,deepaknadig,byrav}@cse.unl.edu

Abstract—The Compact Muon Solenoid (CMS) on the Large
Hadron Collider (LHC) manage high volumes of data that
currently exceeds 100PB across different sites. An important
challenge of delivering data to experimenters in the CMS
workflow is the data volume. An experiment data file has an
average size of 2 Gigabytes, with file sizes ranging between 100
Megabytes and 20 Gigabytes. Also, a complete dataset comprises
of multiple files, with the dataset files ranging from 2 Terabytes
and 100 Terabytes in size. Providing fast access to datasets is
an important enabler for data-intensive science research. In our
work, we demonstrate a Information-Centric Networking (ICN)
approach to providing fast in-network access to CMS datasets. To
that end, we must first address the problem of how to store large
CMS files in network caches closer to the end-users. We propose a
software-defined, storage-aware routing mechanism using named
data networking (NDN) to achieve this goal. Due to the inherent
capacity limitations of the NDN router caches, we use software
defined networking (SDN) to provide an intelligent and efficient
solution for data distribution and routing across multiple NDN
router caches. We demonstrate how software-defined control can
be used for partitioning and distributing large CMS files based
on NDN router cache-state knowledge. Further, SDN control will
also configure the router forwarding strategy to retrieve CMS
data from the network. Using our proposed architecture, we show
that CMS dataset can be retrieved 28% – 38% faster from the
NDN routers caches compared to existing approaches. Lastly,
we develop a prefetching mechanism to improve the transfer
performance of files not available in the router’s cache.

I. INTRODUCTION

Numerous scientific experiments rely on large data transfers
associated with data-intensive science. An example workflow
is the Compact Muon Solenoid (CMS) experiment. The CMS
experiment [1] on the Large Hadron Collider (LHC) manages
a large volume of data that currently exceeds 100PB across
multiple sites. The experiment manages approximately 35PB
of data (a combination of detector readouts and simulated
readouts across a variety of physics-related formats); this
data is write-once, read-many. All CMS managed data is
immutable once written to the permanent storage [2]. Through
a combination of caching and pre-placement, CMS moves its
data across 50 data centers throughout the Worldwide LHC
Computing Grid [3].

The main challenge of delivering data for CMS exper-
imental workflows is the large size of the dataset. CMS
experimental dataset sizes vary between 2 to 100 Terabytes.
In this work, we study how to leverage Information-Centric
Networking (ICN) to provide faster in-network CMS data
access to end-users. Contrary to IP-based, host-centric Internet

architectures, ICN emphasizes content by making it directly
addressable and routable. The users request the data based
on its name instead of using IP addresses. Named Data
Networking (NDN) [4] is an example of an ICN architecture
that transfers data by sending Interests packet and receiving
Data packets. An essential feature of NDN design is the use
of an in-network cache on the routers. These storage-enabled
routers are placed between content custodians (origin servers)
and users. The main advantage of serving the data to the user
from these routers is that the retrieval latency will be reduced
and the user will get the data faster.

A critical problem that must be addressed to use NDN with
CMS workflows is how to efficiently store very large files in
the network. The current implementation of the NDN content
store (CS) is based on caching the data in-memory to provide
faster data access. Due to the limitations of the NDN cache
capacity on each router, novel approaches for efficient cache
management are necessary. For instance, NDN routers can
be deployed with large memory, however, this will increase
the deployment costs and is therefore inefficient. Another
approach is to use a solid-state drive (SSD) for caching the
data, but this approach will increase both the cost, and add
additional delays for data retrieval. In this work, our goal
is to find the appropriate mechanisms to create a software-
based, cache-aware router based on centralized controller and
NDN. Using a centralized controller like the SDN controller
[5] is an important area of interest for the Information-
Centric Networking (ICN) community. The SDN controller
can provide intelligence for routing and caching management
by decoupling the ICN data plane from its control plane.

Our proposed solution works in two phases. First, during
the file retrieval process, if the file is not cached in the
network (and resides on the producer storage), the interest
packet will be forwarded to the centralized controller for
the best retrieval strategy. Small files are retrieved using the
default NDN approach. However, for large files that cannot
be cached on a single router, a distributed retrieval approach
using multiple router content stores will be used. Second,
depending on whether the requested file is already cached on
multiple routers on not, the controller will provide a strategy
for distributed file retrieval (See Section III). On the other
hand, our system architecture also enables the prefetch feature,
where parts of the file can be prefetched and cached on
different routers simultaneously.

The paper is organized as follows: Section II presents

IEEE ANTS 2019 1570580750

1Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 20,2020 at 20:11:20 UTC from IEEE Xplore. Restrictions apply.

the NDN background and the related works; In Section III,
we describe our system architecture for SDN control of
NDN; Section IV outlines our solution approach for cache
management. We describe our testbed setup and discuss the
results in Section V. Finally, we conclude our work in Section
VI.

II. BACKGROUND AND RELATED WORK

A. Named Data Networking

NDN is a Future Internet Architecture (FIA) project which
proposes to re-design the current host-centric Internet archi-
tecture. NDN requests data using its name instead of the IP
address. There is two types of packets in NDN: (i) Interest
packet which contains the data name and is sent to retrieve the
data, and (ii) Data packet containing the data to be sent back
to the consumer as a response to the Interest packet. NDN
names are hierarchically structured. For instance, the name
/ndn/repository/file, is carried by the Interest and is used to
forward the data to the content custodian.

NDN Forwarding Daemon (NFD) is responsible for routing
the interest and caching the data. NFD manages three data
structures: Pending Interest Table (PIT), Content Store (CS),
and Forwarding Interest Base (FIB). The NDN consumer
generates and sends the Interest packet in the NDN network.
When the router receives the Interest packet, it uses the data
name to forward the packets to the NDN producer (i.e.,
data custodian). The router will store the Interest in its PIT
along with the incoming interfaces. If another Interest, from a
different consumer, requesting the same data reach the router,
then the PIT will return the Data packet into the consumer
upon receiving it. The retrieved data is cached in the routers’
CS; if the data is cached in the router CS, then the router will
reply directly to the consumer without sending the Interest
packet to the producer. The caching process is an efficient
way to reduce the latency in retrieving the data and reduce
overheads on the producer. The FIB is considered as the
routing table for the router.

An important feature that NDN routers have is the for-
warding strategy that is used to define how and where the
packets are forwarded. The forwarding strategy will choose
a specific next hop for forwarding until the Interest reaches
the destination. Also, it can select different paths to retrieve
the data. For instance, the forwarding strategy can choose to
forward the packet on the shortest (number of hops) path, the
lowest latency path, or the least congested path.

B. Related work

Numerous recent works explore the use of centralized
control for managing information centric networks (ICN).
Works such as [6], [7], [8], and [9] explore cache place-
ment, caching policies, and content selection strategies on
both on- and off-path routers. SDN-based control of ICN is
also proposed for distributed data transfers in data-intensive
science [10], [11], [12]. The authors in [13] discuss multi-
path interest distribution strategies for both distributed and

centralized control of NDN and how it can improve data trans-
fer performance. However, the interest distribution strategies
presented in [13] do not consider network layer properties
such as NDN on-path congestion and the route bandwidth
availability. Different from the above works, we propose a
centralized cache management framework, that consider the
limitation of the NDN router cache for large data transfer.
Previous works deal either with data retrieval performance
and cache placement, or develop techniques for off-path data
retrieval. However, the missing piece in these works, which
we address in this work, is the cache management framework
and the collaboration between different routers’ CS to cache
large files and return it to the user efficiently.

III. SYSTEM ARCHITECTURE

NFD forwarding strategy is responsible for choosing the in-
terest forwarding interface. The interest can follow a different
route based on the forwarding strategy used. Designing and
choosing the correct strategy will affect the performance and
the data retrieval process. Several forwarding strategies are
provided by the NFD such as best routes, multicast, access
router, client control, and adaptive SRTT-based Forwarding
(ASF) [14] strategy.

The above strategies can be used in different network
environments but they are unsuitable for large-scale datasets.
Since NDN relies mainly on caching the data in the router
to reduce retrieval latency, the above strategies ignore the
environments that deal with large datasets. In this paper,
we propose a solution for cache management and develop a
forwarding strategy that deals with large datasets. We develop
an architecture and associated strategies to deal with large-
volume distributed data transfers over high-bandwidth, high-
delay wide area networks (WANs). The targeted use of our
architecture is the complex and distributed filesystems such
as CernVM File System (CVMFS) [15]. High-energy physics
(HEP) workflows (e.g., Compact Muon Solenoid (CMS) [1])
are evaluating the use of CVMFS for the distribution of
experimental datasets [10] using NDN.

A. Explanatory Example

For large data transfers that exceed the Router CS size, a
cache miss will always occur and the data will always be
fetched from the producer. The following example illustrates
the need for our proposed solution:

If the NDN CS size is 500MB (default size in the current
NDN implementation) and we have a 1GB file with name
"large". The file will be segmented into several chunks and
fetch by several interest packets. The interest name will be, for
instance, /ndn/large/segNum=1 for the file’s first chunk. For
simplicity, let us assume that the chunk size is 1MB. Then,
we will have 1000 interests to fetch the file "large". Since
the CS size is 500MB then the chunks 1-500 will fill the CS,
then the chunks 501-1000 will start replacing the chunks in
the CS if a regular replacement strategy (such as FIFO or
LRU) is employed. Now, if the file is requested again, by
the same consumer or another consumer, then the interests

2Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 20,2020 at 20:11:20 UTC from IEEE Xplore. Restrictions apply.

will start by fetching the first chunk. Since the CS currently
contains chunks (501-1000), then a cache miss will occur, and
the interest will be forwarded to the producer. The chunks (1-
500) will again fill the CS and result in a cache miss. This
scenario will be repeated when fetching the chunks (501-1000)
be replacing the previous chunks.

B. System Architecture

Figure 1 shows an overview of our system architecture.
All routers and the producer communicates with a centralized
controller for cache management and data retrieval. The cen-
tralized controller manages all routers’ CS and the forwarding
strategies that need to be installed on the routers. The system
architecture is described below:

1) NDN Consumer: The NDN consumer represents the
user requesting the data. The Consumer in our architecture is
unaware of the underlying architecture and requests the data
directly by sending Interest to the network.

2) NDN Router: The NDN routers are responsible for
caching the data in their own CS. Also, the NDN routers will
use the forwarding strategy to forward the interest to the next-
hop router. The NDN routers collaborate with the controller
while storing the data. If the file size is small, then one NDN
router is used to store the file. However, for large files, the file
will be stored on multiple NDN routers’ CS. Splitting the file
among multiple NDN routers will avoid premature CS cache
replacement. It will also ensure faster data retrievals due to
the file transferred from in-network caching.

3) NDN Producer: The NDN producer represents the con-
tent custodian or the storage where all data resides and caters
to the consumer interests/requests. The producer can store the
actual files or store them as NDN packets. Storing the data
as NDN packets in advance will avoid the overhead from
converting the regular files into NDN signed packet. In this
work, we convert and segment the files into NDN packets. For
segmenting the file we retain the default NDN chunk size (i.e.
8800 bytes). The NDN producer will update the centralized
controller about the files that it has in its repository and the
size (number of chunks) of each file. The controller will store
this information in its database for the cache management
purposes.

4) Centralized Controller: The controller in this work
represents the main entity in the managing the interest routing
and caching. The controller will receive the interest from
the routers. Based on the status of each router’s CS and
the file size, it will send the forwarding strategies for the
corresponding routers to cache the whole file or part of
the file in their CSs. The centralized controller uses rep-
resentational state transfer (REST) application programming
interfaces (APIs) for communication with the NDN routers
and the NDN producer. The controller manages the NDN
network state information including routers CS states (i.e. the
available space on CS), forwarding paths, and data information
on the NDN producer. We run a program alongside the NFD
on all NDN routers and the NDN producer. This program
is responsible for internal communication with the NFD

and external communication with the SDN controller. The
controller asynchronously communicates with this program to
create a data map of all routers’ CS.

Figure 2 shows an example of the use of our architecture.
When consumer C want to retrieve a large file from the
NDN producer, it will create an interest and send it to
router R1. If it is a new interest, then router R1 will send
the interest to the controller. The controller will read the
file information and the Router CS from its database. The
controller finds, in our example, that routers R2, R3, and R7
have enough space in their CS to store the large file. The
controller will send the configuration to router R1 to split the
interest for the file segments to three paths. If the file is split
into n segments (S0...Sk..Sr..Sn−1), these segments will be
retrieved as follows:

• S0 − S(k−1) through path R1→ R2→ R5→ P
• S(k) − S(r−1) through path R1→ R3→ R6→ P
• S(r) − S(n−1) through path R1→ R4→ R7→ P

The controller will configure the routers R2, R3, and R7 to
cache these segments. Simultaneously, the controller config-
ures the routers R4, R5, and R6 not to cache those segments.
This cache management strategy will help in reducing the
number of cache misses on other routers. Further, it also
benefits from other routers in caching other files.

C. Prefetch Files Segments

We developed a prefetch mechanism to reduce the latency
in retrieving the files. In our previous example (Figure 2),
the controller will ask routers R3 and R7 to start a parallel
data segment retrieval. Since R1 will start retrieving segments
(S0 − S(k−1))) first. The controller will tells router R3 and
router R7 to retrieve segments S(k) − S(r−1)) and segments
S(r) − S(n−1)), respectively and store them in their CS. So,
when R1 completes retrieving the first set of segments from
the producer, it will start retrieving the second and third set
of segments from routers R3 and R7 instead of the producer.
In this way, the path latency will be reduced and the retrieval
time will be optimized.

IV. SOLUTION APPROACH

In this section, we describe the implementation approach
for cache management and data distribution.

A. Controller algorithm

When the router receives an Interest, it will forward it into
the controller asking for the best configuration to forward the
Interest. Algorithm 1 shows the process on the controller to
build the configuration file. The controller will take the Interest
as input. The controller will receive the file information
and the routers’ CS status from its data map (database).
The controller will sort the routers based on the available
space in each router’s CS. The routers with the largest CS
available space will be used first. Based on the file size and
the available CS space of each router, the controller will
decide the number of routers needed to cache the file. Sorting
the routers based on the CS space will avoid splitting the

3Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 20,2020 at 20:11:20 UTC from IEEE Xplore. Restrictions apply.

Controller

NDN
Consumer

NDN
Producer

NDN Router

NDN
Consumer

Fig. 1: System architecture.

C R1

R4

R3

R2

R7

R6

R5

P

Fig. 2: Distributed Interest example.

file among a larger number of routers and avoid additional
delays in retrieving the file later. The controller will send the
configuration instructions to the routers on how to forward
Interests for the file retrieval.

Algorithm 1 Controller Config(i)

Input: NDN Interest (i).
Output: SD-NFD Configuration File.

1: Lookup data map for the namespace in Interest i
2: Sort the routers based on the available space of the routers

CS
3: Compute the number of routers that is needed to cache

the file
4: return NFD-Config(i)

B. Router Forwarding Strategy Algorithm

Algorithm 2 explains the procedure on the router. We
develop a program for communication between the NFD on
the router and the SDN controller. When an interest reaches
the router, the router will check if it is requesting a chunk
from the file which has an installed configuration, or if
this interest is a new one. If the interest is new, then the
router will send the Interest information to the controller. The
controller will reply with the instructions, on how to forward
the Interest, carried in NFD-Config file. The router will use
this file to forward the Interests to retrieve the specific data
accordingly. The NFD-Config file carries the information on

how to divide the Interests by requesting the file from several
interfaces. Since the file is segmented into several chunks,
each Interest will retrieve a specific chunk. The NFD-Config
file will tell the router to forward a set of Interests requesting
(segment0, segmenti−1) on one interface, and another set of
Interests requesting (segmenti, segmentj−1) on a different
interface.

Algorithm 2 Router configuration(i)

Input: NDN Interest (i).
Output: Router NFD configuration for data transfer.

Configuration request:
1: if Interest not configured then
2: Send Interest information to the controller
3: else
4: Forward Interest based on the existing configuration
5: end if

Configuration arrival:
6: Read NFD-Config(i)
7: for all faces in NFD-Config do
8: Forward Interests of (segmenti, segmentk)
9: end for

On the other hand, the controller will send instructions
to the corresponding routers that are going to store the file
segments in their CS to enable the caching process for these
file segments. If the router does not receive this message, then
it will just pass the data without caching it.

Algorithm 3 Prefetch procedure

Input: prefetch_MSG.
Output: Request and cache file segments.

1: READ prefetch_MSG
2: for Seg = startSeg; Seg < endSeg; Seg++ do
3: Interest = /ndn/fileName/Seg
4: Send Interest
5: end for

4Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 20,2020 at 20:11:20 UTC from IEEE Xplore. Restrictions apply.

Further, in the prefetch scenario, the controller will inform
the NDN routers that are going to cache the file to start
fetching parts of the file. The first router will retrieve the
file segments in the regular way (Interests coming from the
consumer), while all other routers which cache the other parts
of the file will start issuing Interests to store the correspond-
ing segments in their CS. Algorithm 3 shows our prefetch
process. Once the router receives the prefetch_MSG from the
controller, the router will read the file name, the prefix, and
the range of the segments that are needed to be fetched. Then,
the router will issue these interests and cache the segments in
its CS even before the actual Interests sent from the NDN
consumer.

V. RESULTS AND DISCUSSION

In this section, we explain our testbed setup, our experi-
ments on this testbed, and discuss our results.

A. Testbed

Figure 3 shows our network topology that we used to run
our experiments. The testbed consists of one NDN consumer,
four NDN routers, an NDN producer, and a controller node.
The NDN Consumer, all NDN Routers, and the NDN Pro-
ducer are running NDN-cxx and NFD.

Controller

NDN
Consumer

NDN
Producer

R1 R3

R2

R4

Fig. 3: Network topology.
We used the GENI [16] platform as our network testbed.

GENI provides a platform for at-scale networking research,
connecting compute resources over the Internet2 AL2S infras-
tructure. We use a total of seven GENI sites (with one node
per site) spread across InstaGENI infrastructures at Kentucky
MCV, Kentucky PKS2, Clemson, Texas, Wisconsin, Vermont,
and Hawaii. Therefore, this setup is representative of a real-
world WAN NDN network.

B. Results and Discussion

The WAN data transfer performance of the proposed archi-
tecture was tested on the GENI network platform. All nodes
(i.e., controller, consumer, routers, and producer) were placed
on different InstaGENI sites and aggregated using layer-2
stitching over Internet2 AL2S. Three different files (600MB,
800MB, 1GB) were used to compare the performance between
the default NDN and our proposed architecture. For all files,
we evaluate the transfer performance when i) The requested
data is not available in the routers’ CS, and the requested data
is always fetched from the producer and then cached at the

router(s); and ii) The file request occurred after the previous
step, i.e., the data might be available in the Router CS since
a similar request has been executed earlier. We computed the
results with 95% confidence interval.

In all experiments, we used the default NDN router CS
(500MB). The replacement policy for the routers CS is least
recently used (LRU). The files are segmented and converted
into NDN packets. Each segment uses the default NDN
segment size (8800 Byte). We set the interest pipeline depth to
50; the consumer will send 50 Interest simultaneously before
receiving the corresponding data. We set a static value for
the pipeline depth to increase the transfer performance. This
value will be changed into a dynamic value based on the
network/path conditions in the future work.

TABLE I: Experiment type.

Experiment type File location
NDN-R Default NDN architecture
NDN-D Proposed system architecture
NDN-D-PR Proposed system architecture with Prefetch

Table I shows the different types of experiments that we
used for the performance comparison. NDN-R represents the
default NDN architecture with the default settings. NDN-
D represents our proposed system architecture for cache
management. NDN-D-PR represents the cache management
with the prefetch feature enabled as explained in Section III-C.

Figure 4a shows the transfer performance when the file
is requested for the first time; in this scenario, the file is
not cached in any router CS. Since in this work we are
interested in caching the large file transfers, we run the
experiments listed in Table I with three different file sizes;
600MB, 800MB, and 1GB. These file sizes are larger than
the default router CS size of 500MB used in NDN. Figure 4a
shows that the performance of NDN-R and NDN-D are similar
since the file is not present in any routers’ CS and the files
are always requested from the NDN producer.

On the other hand, the NDN-D-PF shows a 13.5% –
23.6% performance improvement over other approaches. This
performance gain is due to the file retrieval process in NDN-
D-PF where the first part is requested normally through the
path (Consumer -> R1 -> R2 -> producer) and simultaneously,
the controller will direct routers R3 and R4 to prefetch the
other parts of the file. Therefore, routers R3 and R4 satisfy
the interests request for other file segments.

Figure 4b shows the transfer performance when the file is
requested for the second time; in this case the file is already
cached in the network (i.e., some router’s CS). The NDN-R
shows no benefit from the NDN router caching mechanism.
This is due to the fact that file sizes are larger than the CS.
Therefore, the cached file segments will be replaced with new
file segments (similar to the example in Section III. In the
NDN-R case, all file segments will be requested from the
NDN producer. On the other hand, NDN-D and NDN-PF show
28.1% – 38% performance gains. This is due to the NDN-
D and NDN-PF approaches where the files are cached on

5Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 20,2020 at 20:11:20 UTC from IEEE Xplore. Restrictions apply.

0

5

10

15

20

25

30

35

40

600 800 1000

Ti
m

e
(m

in
ut

es
)

File Size (MB)

NDN-R
NDN-D
NDN-D-PF

(a) File Not cached.

0

5

10

15

20

25

30

35

40

600 800 1000

Ti
m

e
(m

in
ut

es
)

File size (MB)

NDN-R
NDN-D
NDN-D-PF

(b) File cached.

Fig. 4: WAN Performance Evaluation of the distributed cache with/without prefetch. (a) when the file is not cached, and (b)
when the file is cached.

multiple routers’ CS and all file segments are served by the
routers rather than the NDN producer.

Although our architecture focused on large dataset transfers,
small file transfers will still follow the default NDN route (sin-
gle path only). Small files are not split among several routers
unless they are larger than the routers’ CS. Our approach adds
a small additional delay due to the communication with the
controller. However, the delay is negligible as the controllers
are typically one-hop away from the routers.

VI. CONCLUSIONS

Several scienfic and research domains deal with high vol-
ume data transfers including high-energy physics workflows
such as CMS. Managing these large file transfers require a
higher level of network management to cache and retrieve
the files using NDN. In this paper, we presented an archi-
tecture that uses centralized control with NDN to provide
faster in-network access to large datasets. In this work, we
use SDN to provide an intelligent and efficient solution for
data distribution and retrieval across multiple NDN routers’
cache. The SDN controller is responsible for distributing and
splitting large files in the network to fit multiple NDN routers’
content stores. Our proposed system architecture results in
a performance gain of 28.1% - 38%, in comparison to the
current NDN architecture. Further, we developed a prefetch
mechanism which improves the file transfer time if the file
already cached in the network.

In future work, we will focus on the cache placement
problem. In the present scenario, multiple routers have to be
selected to cache large files. Choosing the best locality of the
routers will improve file transfer performance. We will also
study the effect of link bandwidths and their use to avoid
congested links in the NDN network.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant Number OAC-1541442.

REFERENCES

[1] S. Chatrchyan, G. Hmayakyan, V. Khachatryanand et al., “The CMS
experiment at the CERN LHC,” JINST, vol. 3, p. S08004, 2008.

[2] C. Grandi, B. Bockelman, D. Bonacorsi et al., “CMS Distributed
Computing Integration in the LHC sustained operations era,” in Journal
of Physics: Conference Series, vol. 331, no. 6. IOP Publishing, 2011,
p. 062032.

[3] I. Bird, “Computing for the Large Hadron Collider,” Annual Review of
Nuclear and Particle Science, vol. 61, pp. 99–118, 2011.

[4] L. Zhang, A. Afanasyev, J. Burke et al., “Named data networking,”
ACM SIGCOMM CCR, vol. 44, no. 3, pp. 66–73, 2014.

[5] B. A. A. Nunes, M. Mendonca et al., “A Survey of Software-Defined
Networking: Past, Present, and Future of Programmable Networks,”
IEEE Comm. Surveys Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

[6] H. Salah and T. Strufe, “Comon: An architecture for coordinated caching
and cache-aware routing in CCN,” in Consumer Communications and
Networking Conference (CCNC). IEEE, 2015, pp. 663–670.

[7] H. K. Rath, B. Panigrahi, and A. Simha, “On Cooperative On-Path and
Off-Path Caching Policy for Information Centric Networks (ICN),” in
Advanced Information Networking and Applications (AINA), 2016 IEEE
30th International Conference on. IEEE, 2016, pp. 842–849.

[8] Y. Xin, Y. Li, W. Wang et al., “Content aware multi-path forwarding
strategy in Information Centric Networking,” in Computers and Commu-
nication (ISCC), 2016 IEEE Symposium on. IEEE, 2016, pp. 816–823.

[9] R. Chiocchetti, D. Perino, G. Carofiglio et al., “Inform: a dynamic
interest forwarding mechanism for information centric networking,” in
Proc. 3rd ACM SIGCOMM workshop on ICN. ACM, 2013, pp. 9–14.

[10] M. Alhowaidi, B. Ramamurthy et al., “The Case for Using Content-
Centric Networking for Distributing High-Energy Physics Software,” in
ICDCS, June 2017, pp. 2571–2572.

[11] H. Lim, A. Ni, D. Kim et al., “NDN Construction for Big Science:
Lessons Learned from Establishing a Testbed,” IEEE Network, vol. 32,
no. 6, pp. 124–136, Nov. 2018.

[12] H. Newman, A. Mughal, D. Kcira et al., “High Speed Scientific Data
Transfers Using Software Defined Networking,” in Proceedings of the
Second Workshop on Innovating the Network for Data-Intensive Science,
ser. INDIS ’15. New York, NY, USA: ACM, 2015, pp. 2:1–2:9, event-
place: Austin, Texas.

[13] M. Alhowaidi, D. Nadig, B. Ramamurthy et al., “Multipath Forwarding
Strategies and SDN Control for Named Data Networking,” in 2018 IEEE
International Conference on Advanced Networks and Telecommunica-
tions Systems (ANTS) (IEEE ANTS 2018), Indore, India, Dec. 2018.

[14] V. Lehman, A. Gawande, B. Zhang et al., “An experimental investiga-
tion of hyperbolic routing with a smart forwarding plane in NDN,” in
Intl. Sym. on Quality of Service (IWQoS), June 2016, pp. 1–10.

[15] J. Blomer, P. Buncic, and R. Meusel, “The CernVM file system,”
Technical Report, Tech. Rep., 2013.

[16] M. Berman, J. S. Chase, L. Landweber et al., “GENI: A feder-
ated testbed for innovative network experiments,” Computer Networks,
vol. 61, pp. 5 – 23, 2014, sI on Future Internet Testbeds - Part I.

6Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 20,2020 at 20:11:20 UTC from IEEE Xplore. Restrictions apply.

