
Differentiated Network Services for Data-intensive
Science using Application-aware SDN
Deepak Nadig Anantha, Byrav Ramamurthy, Brian Bockelman and David Swanson

Dept. of Computer Science & Engineering
University of Nebraska-Lincoln, Lincoln, NE 68588, USA

Email: {deepaknadig, byrav, bbockelm, dswanson}@cse.unl.edu

Abstract—Data-intensive science projects rely on scalable,
high-performance, fault-tolerant protocols for transferring large-
volume data over a high-bandwidth, high-delay wide area
network (WAN). The commonly used protocol for WAN data
distribution is the GridFTP protocol. GridFTP uses encrypted
sessions for data transfers and does not exchange any infor-
mation with the network-layer resulting in reduced flexibility
for network management at the site-level. We propose an
application-aware software-defined networking (SDN) approach
for providing differentiated network services for high-energy
physics projects such as Compact Muon Solenoid (CMS) and
Laser Interferometer Gravitational-Wave Observatory (LIGO).
We demonstrate a policy-driven approach for differentiating
network traffic by exploiting application- and network-layer
collaboration to achieve accurate accounting of resources used by
each project. We implement two strategies, a 7-3 queuing system,
and a 10-3 queuing system, and show that the 10-3 strategy
provides an additional capacity improvement of 11.74% over the
7-3 strategy.

Index Terms—Software Defined Networks; Application-
awareness; Data-intensive Science, GridFTP

I. INTRODUCTION

High-throughput distributed computing projects such as
Compact Muon Solenoid (CMS) [1] and Laser Interferome-
ter Gravitational-Wave Observatory (LIGO) [2] often require
high-rate data transfer capabilities and consume significant
storage/networking resources. Backbones for Research and
Education (R&E) networks such as Internet2 and Energy
Sciences Network provide the necessary infrastructure and
generalized frameworks for network resource allocation for
these scientific projects. Advances in SDN and OpenFlow [3]
allows for fine-grained network control policies to be managed
by network applications. Although it is possible to improve
the overall performance of scientific data transfers (i.e. end-
to-end) through dynamic resource allocation (e.g. OSCARS
[4]) or through software defined networking, problems exist
with managing resources and differentiating network services
at the experiment/site level.

The GridFTP protocol [5], [6] has become a widely used
network protocol for data movement in cluster/grid environ-
ments. By overcoming the well-known limitations of transmis-
sion control protocol (TCP) for high-latency, high-bandwidth
WANs found in R&E networks at the cost of fairness, GridFTP
maximizes throughput for bulk data movement. Both CMS
and LIGO projects at Supercomputing Center (SCC) heavily
rely on high-throughput computing, with both projects uti-

lizing GridFTP for WAN data movement. GridFTP transfers
maximize throughput by using multiple parallel TCP sessions,
often for the same source and destination endpoints.

Traditional network techniques for traffic management and
prioritization are becoming increasingly limited since GridFTP
breaks TCP fairness. For instance, a campus network operator
may want to apply different priorities on file transfers initiated
by users belonging to different project memberships. The
ability to reliably differentiate between different experiments,
project memberships, and users within a project, is essential
to providing a convenient mechanism for the application of
appropriate actions and policies. To exacerbate this problem,
the GridFTP control channel uses encrypted sessions during
the connection establishment phase, which means that no
amount of ‘sniffing’ the control channel flows allows the
network to classify traffic on its own. Without reliable traffic
classification information, prioritizing traffic based on either
project memberships, or based on users within a project is
not possible. We propose an application-aware SDN solution
to provide differentiated network services at the site-level.
Our work focuses on facilitating a policy-driven approach to
quality of service (QoS), network resource management and
accounting for scientific data projects at the site-level.

The specific contributions of this paper are:
• Application-aware service differentiation: Our approach

demonstrates how application- and network-layer collab-
oration can be exploited to utilize application metadata
for influencing network-layer control decisions for traffic
prioritization. This results in fine-grained control over
data-flows of different projects where priorities are ap-
plied to individual experiments.

• Policy-driven resource management: We implement a
policy-driven approach to decision making at the
experiment-level. This allows not only the definition of
per-flow policies but also policies that can be used to
regulate resource usage of opportunistic data transfers
from projects such as LIGO.

II. BACKGROUND AND RELATED WORK

Although work related to application- and network-layer
collaboration has been limited, there are numerous works
proposing the use of network overlays, middleboxes, and
control plane protocols for session adaptation and end-to-end
communication. We provide an overview and survey of works

that share some common aspects with our application-aware
SDN approach.

Phoebus [7], [8], was one of the earliest efforts to provide
an infrastructure that uses a session layer to the improve end-
to-end performance of high-bandwidth, high-latency networks.
Phoebus used strategically placed “Phoebus Gateways” (PGs)
to create the ability to dynamically allocate network resources
through the use of segment-specific transport protocol adap-
tations. Unlike Phoebus, which provides end-to-end session
adaptation for improving GridFTP data transfer performance,
our work focuses on a single, site-specific network flow
management and prioritization.

The authors in [9] propose a network overlay architecture
for enabling high-throughput, co-ordinated data transfers over
a WAN by leveraging Phoebus and OSCARS [4]. By leverag-
ing application overlays that are embedded in the underlying
network to create on-demand embedded overlays, applications
can use the available network resources more efficiently.
However, the solution does not provide fine-grained controls at
the end-points to prioritize specific flows but focuses solely on
large-scale end-to-end data transfer throughput improvements
only. Other approaches such as [10] and [11] rely on data
locality in cloud storage services. The authors in [10] utilize
common data access pattern observations of file transfers
between compute nodes along with data locality and context
information to choose an adequate transfer protocol. The work
in [12], [13] focuses on exploiting network parallelism and
differentiated scheduling of WAN data transfers to achieve
performance from (virtually) loss-free dedicated resource pro-
visioning systems such as ESnet and Internet2. The authors
in [12] propose the use of multiple paths on the WAN for
the same application transfer session. They argue that the use
of multiple paths, for example, by either exploiting additional
bandwidth resources from existing best-effort WAN links or
by utilizing multiple 10G NICs to create multiple paths over a
100G capable WAN link, higher performance can be achieved.

The SDN-managed Network Architecture for GridFTP
transfers (SNAG) proposed in [14], enables GridFTP transfers
over an SDN. An Application Program Interface (API) ex-
poses application-layer information from the trusted GridFTP
process by using the Globus XIO callout module. By extending
the GridFTP server to interact with an SDN controller securely
over a RESTful API, automated application-layer metadata
forwarding is possible. This metadata is exploited by the
network layer, and is used to accurately classify all active
GridFTP flows. Further, the metadata is also used by the
SNAG SDN application to monitor and log all GridFTP flows,
including user and project membership information with the
monitoring system.

The Globus eXtensible I/O (XIO) [15] provides an extensi-
ble I/O library with the Globus Toolkit [16]. The XIO library
provides a pluggable architecture and SNAG uses a Globus
XIO Callout1 to interface to the Hadoop Distributed File Sys-
tem (HDFS) [17] plugin for the GridFTP servers. HDFS was

1https://github.com/bbockelm/xio_callout

Fig. 1: XIO and GridFTP interaction.

designed primarily for use with distributed storage/processing
infrastructures. Its fault-tolerant design and built-in scalability
features are well suited for serving as the GridFTP servers’
storage layer at SCC. The XIO driver interaction with the
GridFTP servers is as shown in Figure 1.

III. PROBLEM SETTING

Network services differentiation is essential at the site-
level to enhance transfer performance at the network edge.
With both CMS and LIGO projects using the same network
infrastructure, the inability to classify and differentiate ser-
vices results in low-priority users of one project blocking/pre-
empting the high priority users of the other. Further, the lack of
differentiation prevents the site-operator from optimizing data
transfers at the experiment-level. Instead of relying on resource
reservation for each transfer, our solution focuses on site-level
improvements and intelligent decision making at the network
edge to enhance transfer performance. Our goal is to provide
accurate site- and experiment-level classification of flows to
optimize data transfers at the experiment level. By focusing
on site-level rather than end-to-end improvements, our solution
provides maximum flexibility to the site operator in terms of
traffic prioritization and resource usage accounting for individ-
ual experiments. To further motivate the problem, we provide
below, two important drivers on the need for application-
and network-layer collaboration for SDN-managed GridFTP
transfers.

A. Application-aware traffic prioritization

The need for application-awareness arises from the necessity
for managing both encrypted and unencrypted traffic flows.
GridFTP transfers are initiated over an encrypted control
channel and uses multiple randomly selected TCP connections
for data movement. With the inability to differentiate be-
tween low-priority and high-priority users, traffic prioritization
(through classification at the network-layer alone) is not pos-
sible at the site-level. An example use case is when transfers
from two different projects (i.e. CMS and LIGO) use the same
source/destination address for data movement. In such cases,
application-awareness is imperative for differentiating traffic
between the same end-points. Thus application metadata can
then be exploited to prioritize data transfers at the experiment-
level.

B. Policy-driven service differentiation

Resource usage and accounting have been historically prob-
lematic with projects such as CMS and LIGO. With multiple

stakeholders involved in operation and use of the network
infrastructure, operators find it difficult to monitor resources
used by different projects. Therefore, our work focuses on pro-
viding a policy-driven mechanism to apply actions and policies
appropriately to different experiments. Further, these policies
can serve to regulate/meter resource usage of opportunistic
data transfers from projects such as LIGO.

IV. SOLUTION APPROACH

Application-awareness combined with SDN forms the basis
our solution for policy-driven management of data-intensive
science transfers. First, we begin with reliable and accurate
classification of data transfers from different experiments/pro-
jects. This objective is accomplished through the exchange of
application metadata between the GridFTP application servers
and the SDN controller. The SDN controller creates and
manages a repository of all ongoing transfers obtained from
the classification information. This information is employed
to make network-layer and data-plane decisions. A policy
framework is used by the network operator to define and apply
the appropriate policies to these data transfers. This frame-
work consists of a policy-engine and the associated policy
specification language implemented as an SDN application.
The policy controls are communicated to the SDN controller,
which translates the policy to appropriate data plane decisions.
Based on the defined policy, a set of actions (that correspond
to the policy strategy) are applied to the data flows.

A. Traffic Classification

Accurate and reliable traffic classification through
application-awareness is essential to differentiating data
transfers from encrypted sessions. Our system provides
application-awareness to the underlying SDN control by
communicating GridFTP application metadata over a
secure RESTful API. By enabling application-aware traffic
classification for the GridFTP protocol, we now have accurate
experiment/project-level information for decision making.

B. Policy Framework

The policy framework consists of the following: i) a policy
engine that manages user-defined policies, and is implemented
as an SDN application communicating with the SDN controller
over the north-bound APIs; ii) a policy specification language
that uses JavaScript Object Notation (JSON) to specify policies
and exposes a RESTful API for network operators to manage
policies, and iii) a set of defined actions that is processed by
the policy engine’s event processor to affect flow treatment
actions to appropriate data transfers. In the following, we
briefly discuss these components:

1) Policy Engine: The policy engine comprises of a policy
manager, an event handler, a parser, and a policy repository.
The policy manager is responsible for the lifecycle manage-
ment of policies created using the RESTful APIs. After the
parser validates the policies, the new/updated policy infor-
mation is stored in the repository. The policy engine’s event
handler converts the policy specifications to corresponding

OpenFlow rules that are communicated to the switches using
the south-bound APIs.

Listing 1: Example JSON policy specification.
{
"name": "string",
"type": "user|project|experiment",
"strategy": "strategy_id"
"action": "start|modify|stop",
"specs": [value1, value2],
"time": [start, end]

}

2) Specification Language: The policy specification uses
JSON resources encapsulated in a REST POST to interact
with the policy engine in the framework. The specification
language allows us to define/modify the default flow treatment
of an experiment/project. An example policy specification
is shown in Listing 1. As shown, each policy specifies the
type of action to be applied to the data transfers of an
user, an experiment, or a project. Each policy specification
also provides a mechanism to specify start- and end-times
for policy enforcement. The valid actions and the associated
service differentiation strategies that can be applied to a data
transfer are described next.

3) Actions and Strategies: Actions along with pre-defined
strategies are responsible for implementing the desired flow
treatment behaviors in the data-plane. A site operator can
define different QOS and traffic prioritization/management
strategies, and specify the appropriate strategy to be applied
using the policy specification. Each strategy is composed of
two parts: definitions (e.g. queues to use, associated priorities,
max/min rate settings etc.) and a trigger that initiates the
policy enforcement.

4) RESTful APIs: The services implemented by our
application-aware SDN solution are exposed using a RESTful
API over the SDN controller’s north-bound interface. The
exposed RESTful APIs are listed in Table I.

TABLE I: Policy Framework REST APIs.

Method URI Description
GET /v1/policies/{api_version} Show details of specific API

version
GET /v1/policies/ List all current policies
POST /v1/policies/ Establish a new policy
GET /v1/policies/{policy_id} List policy by {policy_id}
DELETE /v1/policies/{policy_id} Delete policy by {policy_id}

These APIs can be used to manage policies over a HTTP(S)
protocol. Policies can be created, updated or deleted using
the above REST calls. A JSON information model is used to
describe the resources associated with these APIs.

C. Solution Architecture

The solution architecture is as shown in Figure 2. The
GridFTP server pool oversees data transfers from both CMS

and LIGO projects. The GridFTP server uses the XIO callout
module to send application metadata to the SNAG application
on the SDN controller. SNAG is responsible for providing
information regarding new and ongoing data transfers to the
site operator. The site operator then uses the transfer statistics
to make the policy decisions that are enforced using the
policy framework built as an SDN application. The policy
framework provides a RESTful API for communication, and
policy enforcement can either be performed manually by the
site operator or can be automated by the SDN controller.

D. Algorithm Design

Our algorithm focuses on providing a policy-based solution
to network services differentiation. We rely on two important
principles namely: application-awareness and policy strategy.

While application-awareness gives us valuable insights into
the current state of data transfers from various users/project-
s/experiments, policy strategy, on the other hand, allows us
to apply the right forwarding behaviors to the desired flows.
The AA_DNS(p, traffic_stats) algorithm is as shown in
Algorithm 1. The algorithm initializes policy IDs for each
policy and manages them in a PolicyMap. The policy en-
gine parses each policy and extracts the specified strategy
(p.strategy). The policy strategy contains information about
QoS requirements, queue specifications and priority definitions
for the target traffic. This information is used to create the
appropriate flow rules by the SDN controller and applied to
the corresponding switches in the data plane to change the
forwarding behaviors.

E. Implementation

We use the hierarchical token bucket2 (HTB) for egress traf-
fic shaping. HTB is a egress queuing discipline implementation
for Linux kernel packet scheduler user space utilities. We limit
our discussion to egress traffic shaping (using queues) and do
not use ingress rate limiting algorithms (that employ policing)
to provide differentiated services. Ingress rate limiting/policing
does not use queues but drops packets beyond a certain rate
instead; this is problematic as some protocols react severely to
dropped packets. We present two strategies for implementing
differentiated network services for GridFTP transfers using
egress traffic shaing and queues.

1) 7-3 Queues: This strategy creates two queues in the
ratio 7:3. We evaluate transfer performance on a 10Gbps link.
Therefore, we create two queues q1 and q2, with ingress traffic
shaped to 7Gbps and 3Gbps respectively. The two queues have
equal priority and have their priorities set to a value higher
than the best-effort link. The strategy places CMS traffic on
q1 and LIGO traffic on q2.

2) 10-3 Queues: Here, we create two queues, q1 and q2
with rates of 10Gbps and 3Gbps respectively. The priority of
q1 is greater than that of q2, which is an important difference
from the previous strategy. In this approach, we utilize a single
high priority 10Gbps queue for all data transfers except LIGO.

2http://luxik.cdi.cz/ devik/qos/htb/

Algorithm 1 AA-DNS(p, target)

Require: Policy File (p), target
Output: Provisioned Network Flows

Initialization :
1: for all p ∈ P do
2: Generate p_id(p)
3: if (p 6∈ PolicyMap) then
4: Add (p, p_id(p)) to PolicyMap
5: else
6: Replace PolicyMap(p)
7: end if
8: end for

Policy Enforcement :
9: for all p ∈ PolicyMap do

10: if (p.expired 6= TRUE) then
11: CONFIGURE(queues ∈ p.strategy)
12: flowrule = COMPOSE(p, target)
13: Ruleset← flowrule
14: for all Switch s ∈ S do
15: APPLY Ruleset(s)
16: end for
17: end if
18: end for

LIGO transfers if initiated, are automatically switched to use
q2. In the following section, we discuss the performance of
both strategies.

V. EXPERIMENTS

Our application-aware SDN solution is used to manage and
monitor data transfers over the GridFTP protocol, providing
differentiated network services. The solution is tested on the
Kingfisher release (1.10.0) of ONOS [18] SDN controller.
The policy framework and the QoS/prioritization systems are
implemented as an ONOS application. The ONOS application
interacts with the GridFTP protocol and obtains application
metadata which is used to classify flows based on users,
projects or experiments. The application metadata is not only
used to obtain real-time data transfer information but also
allows for the creation of a GridFTP transfer statistics reposi-
tory. This repository provides useful information that aids the
site operator in designing/choosing the appropriate policy for
service differentiation.

A. Network Testbed

We test our solution on a network testbed that is setup
to integrate with a U.S. CMS Tier-2 site. The site handles
high-volume data flows and performs both high-priority CMS
transfers and low-priority opportunistic transfers to Fermilab.
While the GridFTP protocol is employed for bulk batch
transfer, the XROOTD protocol is used for interactive jobs.
The site holds approximately 2PB of data. Our network testbed
effectively combines several state-of-art techniques including:

• An SDN controller for intelligent control plane forward-
ing decisions, associated apps for enabling application-
awareness, and a policy framework implementation.

Fig. 2: Solution Architecture.

• A test GridFTP server removed from the production pool
and the GridFTP-HDFS plugin for the GridFTP storage
layers. A Globus XIO callout module and SNAG interface
to provide CMS file transfer information to the SDN
controller over a RESTful API.

• 100Gbps connectivity between SCC and the WAN.

Project Testbed

Production Network

100Gb

Production
GridFTP Servers

Testbed
GridFTP Servers

Dell S6000

Edge-Core
AS4600-54T

ONOS Controller

Brocade MLXe-8
Border Router

WAN10Gb 8x 10Gb

10
G

b

10Gb

Fig. 3: Network testbed topology and connectivity information.

The testbed network topology is as shown in Figure 3.
A Brocade MLXe router at the data center border connects
both the production and testbed environments to a 100Gbps
WAN. The CMS cluster network core utilizes the Dell S6000
40GbE switch, whereas the testbed network was attached to
an OpenFlow enabled Edge-Core AS4600-54T switch.

B. Results and Discussion

First, we present the raw bandwidth of the physical egress
port in Figure 4 with a confidence interval (CI) of 95% from
10 measurements over 30 seconds. As the physical interface
is shared between multiple servers, we observe significant
variations in the available bandwidth. To overcome this limi-
tation and limit the dependence on time varying bandwidth
availability, we create a single 10Gbps queue on an Open
vSwitch instance connected to this physical interface, and use
it for performance testing. Next, in Figure 5, we show the
bottleneck bandwidths for creating the 10Gbps queue when
both egress traffic shaping and ingress rate limiting are used.
It can be seen that the performance of the ingress rate limiting

varies with the burst size. Thus, we focus only on egress traffic
shaping for our evaluations.

Fig. 4: Average raw bandwidth measured as the achievable
throughput of an iperf flow on the link.

Fig. 5: 10Gbps Bottleneck Bandwidths (Egress Shaping and
Ingress Policing).

Figure 6 shows both the individual and aggregate bottleneck
bandwidths for 7-3 queues. The performance of 7-3 queues
for 10 random transfers is shown in Figure 7. It can be seen
that both queues exhibit linear correlation with a decrease in
q2 traffic resulting in a corresponding increase in q1 traffic
as shown by the trend lines. Since both queues are set to
use the same priorities, they behave as two rate-limited best-
effort queues. Figure 8 shows the performance of strategy 2,
where LIGO traffic is switched to a lower priority queue.
It can be seen that the during LIGO transfers, the higher
priority queue q1 shapes its traffic to accommodate LIGO

flows. Note that q2 uses a portion (max 3Gbps) of the larger
10Gbps queue i.e. q2 does not represent a separate queue from
q1. Comparing the aggregate throughputs of both strategies
from Figures 6 and 8, we see that strategy 2 provides an
additional capacity improvement of 11.74%. This is because
CMS flows can achieve higher throughputs as fewer traffic
shaping requirements free more bandwidth.

Fig. 6: Two Queues with Traffic Shaping, Ratio: 7-3.

Fig. 7: 7-3 Queue performance, Random Traffic, 10 Samples.

Fig. 8: 10-3 Switched Queue performance with LIGO Traffic.

VI. CONCLUSIONS AND FUTURE WORK

We present an application-aware SDN approach to network
services differentiation. Our solution allows the application
of per-experiment policies for science data transfers at the

site-level which was not previously possible. We present two
strategies, 7-3 and 10-3 queues, for applying QoS to CMS
and LIGO flows. We show that the 10-3 strategy performs
better for handling opportunistic transfers from the LIGO
experiment. Our future work will focus on creating adaptive
strategies on-the-fly, so that policies can be applied in an
automated fashion.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant Number OAC-1541442. This
work was completed using the Holland Computing Center of
the University of Nebraska, which receives support from the
Nebraska Research Initiative. The authors would like to thank
Garhan Attebury, Holland Computing Center at UNL for his
valuable support.

REFERENCES

[1] S. Chatrchyan et al., “The CMS experiment at the CERN LHC,” JINST,
vol. 3, p. S08004, 2008.

[2] B. P. Abbott et al., “LIGO: the Laser Interferometer Gravitational-Wave
Observatory,” Reports on Progress in Physics, vol. 72, no. 7, p. 076901,
2009.

[3] N. McKeown et al., “OpenFlow: Enabling Innovation in Campus Net-
works,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74,
Mar. 2008.

[4] C. Guok, E. N. Engineer, and D. Robertson, “ESnet On-demand Secure
Circuits and Advance Reservation System (OSCARS),” Internet2 Joint
Techs, 2006.

[5] W. Allcock et al., “The Globus Striped GridFTP Framework and Server,”
in Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005
Conference, Nov 2005, pp. 54–54.

[6] W. Allcock et al., “GridFTP: Protocol Extensions to FTP for the Grid.
2003,” in Global Grid Forum.

[7] E. Kissel, M. Swany, and A. Brown, “Improving GridFTP performance
using the Phoebus session layer,” in Conference on High Performance
Computing Networking, Storage and Analysis, Nov 2009, pp. 1–10.

[8] E. Kissel, M. Swany, and A. Brown, “Phoebus: A System for High
Throughput Data Movement,” J. Parallel Distrib. Comput., vol. 71, no. 2,
pp. 266–279, Feb. 2011.

[9] L. Ramakrishnan et al., “On-demand overlay networks for large scien-
tific data transfers,” in 2010 10th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing, May 2010, pp. 359–367.

[10] R. Tudoran et al., “Adaptive file management for scientific workflows
on the azure cloud,” in 2013 IEEE Intl. Conference on Big Data, Oct
2013, pp. 273–281.

[11] R. Tudoran, A. Costan, and G. Antoniu, “Overflow: Multi-site aware big
data management for scientific workflows on clouds,” IEEE Transactions
on Cloud Computing, vol. 4, no. 1, pp. 76–89, Jan 2016.

[12] D. Gunter et al., “Exploiting network parallelism for improving data
transfer performance,” in 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis, 2012.

[13] R. Kettimuthu et al., “Differentiated scheduling of response-critical and
best-effort wide-area data transfers,” in 2016 IEEE Intl. Parallel and
Distributed Processing Symposium (IPDPS), May 2016, pp. 1113–1122.

[14] D. N. Anantha et al., “SNAG: SDN-managed Network Architecture for
GridFTP Transfers,” in INDIS ’16, SLC, Utah, November 2016.

[15] W. Allcock et al., “The Globus eXtensible Input/Output System (XIO):
A protocol independent IO system for the Grid,” in 19th IEEE Intl.
Parallel and Distributed Processing Symposium.

[16] I. Foster, Globus Toolkit Version 4: Software for Service-Oriented
Systems. Springer Berlin Heidelberg, 2005, pp. 2–13.

[17] K. Shvachko et al., “The Hadoop Distributed File System,” in Proceed-
ings of the 2010 IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), ser. MSST ’10, 2010, pp. 1–10.

[18] P. Berde et al., “ONOS: Towards an Open, Distributed SDN OS,”
in 3rd Workshop on Hot Topics in Software Defined Networking, ser.
HotSDN ’14. New York, NY, USA: ACM, 2014, pp. 1–6.

