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Abstract—In this paper, we propose an application-aware
intelligent load balancing system for high-throughput, distributed
computing, and data-intensive science workflows. We leverage
emerging deep learning techniques for time-series modeling to
develop an application-aware predictive analytics system for
accurately forecasting GridFTP connection loads. Our solution
integrates with a major U.S. CMS Tier-2 site; we use a real
dataset representing 670 million GridFTP transfer connections
measured over 18 months to drive our predictive analytics
solution. First, we perform extensive analysis on this dataset
and use the connection loads as an example to study the
temporal dependencies between various user-roles and workflow
memberships. We use the analysis to motivate the design of
a gated recurrent unit (GRU) based deep recurrent neural
network (RNN) for modeling long-term temporal dependencies
and predicting connection loads. We develop a novel application-
aware, predictive and intelligent load balancer, APRIL, that
effectively integrates application metadata and load forecast
information to maximize server utilization. We conduct extensive
experiments to evaluate the performance of our deep RNN
predictive analytics system and compare it with other approaches
such as ARIMA and multi-layer perceptron (MLP) predictors.
The results show that our forecasting model, depending on
the user-role, performs between 5.88%–92.6% better than the
alternatives. We also demonstrate the effectiveness of APRIL by
comparing it with the load balancing capabilities of an existing
production Linux Virtual Server (LVS) cluster. Our approach
improves server utilization, on an average, between 0.5 to 11
times, when compared with its LVS counterpart.

I. INTRODUCTION

Recently, software defined networking (SDN) [1] and big

data technologies [2] have received significant interest from

both academia and industry. While big data, characterized

by “5Vs” (volume, variety, velocity, value, and veracity),

can have profound impacts on network design, such aspects

have traditionally been addressed separately from the SDN

paradigm. Some SDN features including control/data plane

separation, programmability/reconfigurability, and logical cen-

tralization can positively benefit big data tasks such as data

acquisition [3], delivery [4], [5], [6] and storage [7].
An ever-increasing need for big data in science has led

to the rapid adoption of flexible (and programmable) high-

speed network infrastructure. Such infrastructures typically

rely on 100Gbps links to support large-scale data movement.

As an example, the high-energy physics community through

the Large Hadron Collider (LHC) project, has experimental

data transfers reaching tens of petabytes every year. Example

data-intensive science workflows include the Compact Muon

Solenoid (CMS) [8] and Laser Interferometer Gravitational-

Wave Observatory (LIGO) [9]. The most popular tools for

big data movement include GridFTP [10] and XROOTD [11].

Since scientific research is highly data-driven, they place an

undue burden on campus networks for data delivery, storage,

and processing. Flexible and scalable end-to-end network

architectures are necessary to ensure that data transfer appli-

cations use the network efficiently. Numerous scientific big

data architectures have been developed (e.g. [12], [13], [14])

to avoid performance hot-spots associated with traditional

networks.

Numerous research efforts (e.g., [15], [16], [17]) have

focused on SDN-based efficient network resource allocation

algorithms and techniques for cloud and data center networks.

However, most of these techniques target the optimization

of network resources allocation based on factors such as

traffic demand/loads, quality of service (QoS) requirements

and usage patterns. Such key factors are generally highly

volatile and time-varying in nature. Limited work has been

done to model data transfers, or to predict the key factors that

affect network resource allocation. Load balancing forms a

critical component of big data network architectures as they

directly influence application response times and maximize

throughput via optimized traffic delivery to the application

servers. Large-volume data transfers associated with big data

provides many opportunities for understanding usage patterns

and gain insights into network resource requirements. Rather

than viewing big data systems as placing an undue burden

on campus networks, we can exploit the insights gained

in better understanding user/traffic demands. This results in

optimized resource allocation to better serve the needs of

campus network users.

In this paper, we propose a novel intelligent load-balancing

technique for improving server utilization using application-

aware SDN and deep learning approaches. We also propose a

deep learning approach for modeling large data transfers in the

campus network. Deep learning is a representational learning

technique that can automatically discover data representations

using a multi-layer network [18]. The representation is then

used to infer large dataset information without the need for
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complex analysis. In this work, we demonstrate how deep

learning based predictors can be utilized to make accurate

predictions and forecast future network connections by relying

on application-layer metadata. We implement a gated recurrent

unit (GRU) [19] based deep learning model for GridFTP

connection time-series predictions. Our model incorporates an

application-aware SDN system to classify traffic and to facil-

itate application-layer metadata exchange with the network-

layer. To the best of our knowledge, this is the first effort to

leverage application-aware SDN and deep learning techniques

for modeling/predicting big data science data transfers for load

balancing applications. We also show the effectiveness and

superiority of our approach by evaluating it with a real-world

dataset from a major U.S. CMS Tier-2 site.

A. Contributions and Organization

The specific contributions of this paper are as follows:

1) GRU-based Deep Learning Predictive Analytics: We de-

velop a gated recurrent unit (GRU) based deep learning

model for GridFTP connection time-series prediction.

The model employs an application-aware SDN approach

to obtain accurate and reliable traffic classification infor-

mation to forecast future connections.

2) Novel Application-aware Load Balancing: We propose

a novel application-aware, predictive and intelligent

load balancing algorithm (APRIL). APRIL combines

application-layer metadata with deep learning predictive

analytics resulting in an intelligent load balancer.

3) Real-world large-scale dataset: We demonstrate our

model’s effectiveness through extensive evaluations us-

ing a real dataset from a U.S. CMS Tier-2 site. We

present detailed data analysis to discover and identify

long-term temporal dependencies in the dataset. We also

compare our deep learning predictive model with other

approaches such as Autoregressive integrated moving

average (ARIMA) and multi-layer perceptron predictors.

4) Scalability and Improvements over LVS: We also demon-

strate the scalability of our solution by deploying our

model on a project testbed network that has been set up

to integrate with a U.S. CMS Tier-2 site. We compare the

benefits and superiority of our solution with an existing

production Linux Virtual Server (LVS) cluster.

The paper is structured as follows: Section II provides a

brief overview of application-aware SDN in the context of

load-balancing, the role of predictive analytics, and describe

related works; Section III presents the exploratory analysis of

our dataset; In Section IV, we detail our experimental network

testbed and our experimental setup; Section V presents our

deep learning models and approaches to predicting GridFTP

connection transfers. We describe our Gated Recurrent Unit

(GRU) based prediction model for time-series load forecasting

across multiple GridFTP servers. In Section VI, we present our

intelligent application-aware load-balancing solution (APRIL)

for managing distributed high-throughput data transfers in the

campus network. Lastly, in Section VII, we conclude our work

and discuss the future work.

II. RELATED WORK

Numerous research efforts have focused on developing SDN

load balancing mechanisms. The work in [20] presents a

comprehensive survey on SDN load balancers. However, most

of these are based on traffic routing mechanisms, or improve

factors such as latency, synchronization, QoS, etc., or use

heuristic optimizers to improve performance. Other works

such as [21], [22] focus on LVS performance improvements.

Although load balancers support specific transport-layer proto-

cols, limited work has been done to develop true application-

aware load balancing systems. Recent efforts such as [23],

[24], [25] leverage machine/deep learning techniques for traffic

classification and/or predictions. Integrated SDN and deep

learning techniques have also be employed in VNF placement

in NFV networks [26] and SDN security among others.

Different from the above, our work focuses on leveraging

deep learning techniques to accurately model and predict the

data-intensive science traffic load by exploiting an application-

aware SDN solution. Further, we develop a novel intelligent

load balancer that combines both application-layer metadata

and future forecast knowledge to improve server utilization.

III. DATA ANALYSIS AND MODELING

Data analysis and modeling is an essential step in providing

us valuable insights about the temporal dependencies in the

dataset. This information is critical to choosing an appropriate

data and prediction model for improved forecast accuracy. In

this section, we present our dataset used in the modeling and

prediction. We also perform exploratory data analysis on the

dataset to motivate our design choices.

A. Dataset

The dataset consists of GridFTP transfer connection data

obtained from a major U.S. CMS Tier-2 site that performs

frequent high-volume (low- and high-priority) transfers to

Fermilab and holds over 3 petabytes of data. The site uses

both the GridFTP protocol and XROOTd for bulk batch

transfer jobs and interactive jobs, respectively. The data was

obtained using an application-aware approach similar to the

ones in [27], [28]. The dataset includes GridFTP connection

information collected from a single U.S. CMS Tier-2 site over

18 months. The dataset represents over 670 million GridFTP

connections from both CMS and LIGO workflows. The dataset

contains connection information classified by four CMS user

roles (as defined in the CMS computing model [8]) and a

single LIGO user role. A pool of twelve (12) GridFTP servers

are employed by the site to serve both campus network users

and external researchers. The four CMS user roles include:

i) US CMS Pool representing analysis transfers associated

with users’ jobs, ii) CMSProd similar to (i), but representing

production workflows, iii) CMS PhEDEx representing the

CMS production data movement, iv) LCG Admin representing

site availability monitoring transfers. The LIGO user-role

represents LIGO transfers that are opportunistic and share

networking resources with CMS users. Other users include

site administrators and computing center staff.
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(a) Autocorrelation plot of Dm, Duration= 300 minutes.
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(b) Autocorrelation plot of Dh, Duration= 240 hours.
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(c) Autocorrelation plot of Dm, Duration= 5 days.
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(d) Autocorrelation plot of Dh, Duration= 60 days.

Fig. 1: Temporal autocorrelation properties of the datasets.

The GridFTP protocol uses encrypted control and data

channels for data movement between end-points. Application-

layer metadata is crucial for classifying the GridFTP connec-

tion information. Therefore, we rely on the GridFTP XIO

plugin [29] to securely interface with the GridFTP servers

and facilitate application metadata exchange with the SDN.

The obtained connection information is pre-classified based

on its workflow (or experiment) membership and also based

on the user role within the workflow. User roles not be-

longing to either workflow are classified as “Other” users.

The default dataset measurement granularity is in the order

microseconds. However, as this granularity does not permit

meaningful analysis, we use data aggregation to obtain ag-

gregate statistics with granularities of one minute and one

hour respectively. A nonuple (i.e., 9-tuple) is used to identify

each connection uniquely and includes connection strings,

user/workflow membership, files transferred, transfer direction

and a status field. We denote the GridFTP connection dataset

by G = {g(a1,··· ,a9),n,t}, ∀t, ∀n ⊂ N . We denote the downlink

and uplink connections by D = {d(a1,··· ,a9),t}, ∀t, ∀n ⊂ N
and U = {u(a1,··· ,a9),t}, ∀t, ∀n ⊂ N , respectively, for N
observations. We normalize both datasets D and U within

a range of [0, 1]. To achieve this, we use Min-Max scaling to

compute the normalized values Ĝ as:

Ĝ =
G−Gmin

Gmax −Gmin
(1)

where, Gmax and Gmin represent the maximum and min-

imum values of the set G, respectively. Also, we note that

D ⊂ G and U ⊂ G. Lastly, we denote the datasets with

different measurement granularities by Gm (one minute) and

Gh (one hour), respectively.

B. Exploratory Analysis

The objective of our exploratory data analysis is to dis-

cover and identify data dependencies in G, D and U in

the temporal domain. Initially, we analyze the dataset for

the presence of systematic patterns combined with random

error. By identifying and removing non-stationary processes

within the dataset, we can obtain a dataset with independent

identically distributed (i.i.d.) components that are amenable to

modeling using linear regression on exogenous variables. We

also examine temporal autocorrelation and data dependency

between different user-roles for both datasets, i.e., D and U,

respectively. We make the following important observations:

Observation 1: The dataset G exhibits non-stationarity.

We denote the kth observation as Gk = g(a1,··· ,a9),k,t. The

dataset G is strictly stationary if:

(G1, G2, · · · , Gn)
′ d
= (G1+h, G2+h, · · · , Gn+h)

′, ∀n ≥ 1
(2)

where,
d
= denotes that the two random vectors share the same

joint distribution function. The Augumented Dickey-Fuller

(ADF) test is a widely used tool to test stationarity [30].

The autocorrelation plots of the two downlink datasets with

measurement granularities of one minute and one hour are

shown in the Figure 1. Figures 1a and 1b represent the short-

run dataset (measured over 300 minutes and 240 hours, respec-

tively), while Figures 1c and 1d represent the corresponding

long-run datasets (measured over 5 and 60 days, respectively).

The presence of significant autocorrelation in the lags for time

t > 1 is an indicator of non-stationarity. This is also verified

by running the ADF test on the above datasets, resulting

in the test accepting the null hypothesis, indicating a non-

stationary process. Thus, (first-order) differencing is required

to stationarize the datasets.

Observation 2: The dataset G has non-zero temporal auto-
correlation properties.

In the absence of significant autocorrelation, the data points in

Figure 1 fall within the confidence interval bands represented

by the dashed lines. The sample autocorrelation function

(ACF) is commonly used to identify and discover data depen-

dency between the observations. We define the sample ACF
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Fig. 2: Short- and long-run dataset properties and cross-correlation.

for the dataset G by:

ρ(h) =
γ̂(h)

γ̂(0)
=

∑n−|h|
t=1 (Gt+|h| − Ḡ)(Gt − Ḡ)∑T

t=1(Gt − Ḡ)2
,−n < h < n

(3)

where, Ḡ represents the sample mean of G1, G2, · · · , Gn,

and n is the total number of observations in the sample. The

autocorrelation plots shown in Figure 1 exhibits high values

for ρ for lags h > 1. This indicates the presence of systematic

patterns mixed with random errors.

Observation 3: The dataset G exhibits low cross-correlation
in the temporal domain, between different user-roles.
We use the correlation matrix to assess the strength of the

relationship between two user-roles with either the same, or,

with different workflow memberships. Figure 2 shows the

correlation matrix heatmaps for the short-run datasets (both

1m and 1h aggregates) along with the corresponding box-

whiskers plots. Only the lower triangular correlation matrix

is presented in the correlation heatmaps for brevity. As shown

in the Figures 2a and 2c, we observe low to moderate cross

correlation between the users’ transfer connections for both

datasets. For the short-run dataset with one-minute aggregates

Dm, we see low- to moderate positive correlation between

different users’ transfers and low negative correlation in one

instance. Similarly, we see low positive correlation between

the users’ transfers for the short-run dataset with hourly

aggregates Dh. Both correlation matrices represent the users’

connection transfer relationships, and provide some insight

into the number of parameters required to estimate them. The

box plots for datasets Dm and Dh are shown in Figures 2b

and 2d, respectively. From the box plot, we observe that

the CMSPool users exhibit large variations across both Dm

and Dh datasets. CMSProd and Other show large hourly

variations, while LIGO and PhEDEx exhibit little variation

across datasets but have significant outliers. The box plots are

useful in helping us understand the distribution characteristics

of the datasets and in outlier detection.

IV. EXPERIMENTAL TESTBED

In this section, we present our experimental setup, an

application-aware architecture to integrate with the GridFTP

server pool, our data management framework, the testbed

network topology, and how it interfaces with the Linux Virtual

Server (LVS) [31] load balancing cluster. Our experimental

network topology is shown in Figure 3. It consists of five

components namely: (i) the GridFTP server pool, (ii) the LVS

load balancing cluster and a LVS redirector, both of which

are transparent to end-user applications, (iii) the application-

aware SDN infrastructure, (iv) the Elastic stack cluster for data

management, and (v) the SDN data plane infrastructure and

100Gbps connectivity to the wide area network (WAN).

A. Application-aware SDN and GridFTP Integration

Application-awareness is achieved using the Globus eX-

tensible I/O (XIO) [29] extensible I/O library. We develop

a Globus XIO SDN Callout to interface with the SDN

infrastructure. The XIO Callout module integrates GridFTP

servers with the SDN via an SDN application similar to

SNAG [27]. It also uses a Hadoop Distributed File System

(HDFS) plugin to interact with GridFTP servers’ distributed

storage/processing infrastructure. The XIO Callout module

facilitates the exchange of application-layer metadata with the

SDN infrastructure.
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Fig. 3: Experimental Testbed.

B. Network Testbed Topology

Our network testbed setup is an exemplary implementation

of an SDN that can handle frequent, high-volume, low- and

high-priority data transfers from a major U.S. CMS Tier-2

site to Fermilab. The U.S. CMS Tier-2 site holds over 3PB

of data, and uses both GridFTP and XROOTD protocols for
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bulk batch transfer jobs and interactive jobs, respectively. Our

testbed network architecture effectively combines several im-

portant components including: (i) Intelligent flow control, flow

forwarding and management using the ONOS SDN controller,

(ii) An application-aware SDN application to facilitate secure

exchange of application-layer metadata with the network-layer,

(iii) A GridFTP Callout module that serves as an interface

between the GridFTP servers, its HDFS storage backends and

the SDN infrastructure. The XIO callout communicates with

SDN controller using a secure representational state transfer

(REST) application programming interface (API), and (iv) A

Brocade MLXe border router at the campus network edge

with 100Gbps WAN connectivity to Internet2. A Dell S6000

40 GbE switch to serve as the CMS cluster network core

hosting 12 production GridFTP servers and an Edge-Core

AS4600-54T SDN-capable switch for testing purposes.

C. Data Management System

Our current dataset includes information of over 670 million
GridFTP transfer connections from both CMS and LIGO

workflows. This dataset is consistently growing as it is updated

with new real-time connection information, while also being

expanded to other workflows. To manage this large dataset, we

employ a 11-node Elastic stack [32] cluster with the following

configuration: (i) Master Nodes: 3×Dell SC1435, 16GB RAM,

250GB HDDs, (ii)Hot-Data/Ingest Nodes: 3×Sun SunFire

X2200, 32GB RAM, 240GB SSDs, (iii) Warm Data Nodes:

5×Sun SunFire X2200, 32GB RAM, 2TB HDDs, and (iv) 1Gb

Ethernet interconnects between all nodes.

This Elastic cluster is responsible for storing all application-

aware information exchanged between the GridFTP server

pool and the SDN infrastructure. A syslog style file on each of

the 12 GridFTP servers feeds a filebeat agent (a lightweight

data shipper for the Elastic stack), which in turn feeds the

logstash, a server-side data ingestion pipeline on the Elastic

cluster.

V. MODELING LOADS AND PREDICTIVE ANALYTICS

A. Overview

We propose the use of recurrent neural networks (RNNs)

for modeling and predicting time-series data. RNNs are a

class of generalized feed-forward neural networks that exhibit

dynamic temporal behavior and can, therefore, be used for

time sequence modeling. The RNN can maintain and use

internal states (memory) to process input sequences. How-

ever, standard RNNs suffer from well-known problems of

vanishing/exploding gradients and therefore, using RNNs to

model long-term dependencies is difficult [33]. Many solu-

tions have been proposed including long short-term memory

(LSTM) [34] and gated recurrent units (GRU) [19] to capture

and model long-term temporal dependencies [35]. Both LSTM

and GRU use “forget” gates that enable a model to both learn

to forget previous states (i.e., dropping memory), and to update

current states (i.e., adding new memory).

We specifically use a deep GRU network to make GridFTP

connection predictions. A GRU cell is shown in Figure 4. The
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Fig. 4: Gated Recurrent Unit (GRU) Cell.

GRU cell is a simplified version of LSTM cell, but is known

exhibit similar performance [36].

Unlike LSTM, both state vectors in GRU are merged into

a single vector h(t). The GRU cell state computations are

summarized below:

z(t) = σ(WT
xz · x(t) +WT

hz · h(t−1) + bz) (4)

r(t) = σ(WT
xr · x(t) +WT

hr · h(t−1) + br) (5)

g(t) = tanh(WT
xg · x(t) +WT

hg · (r(t) ⊗ h(t−1)) + bg) (6)

h(t) = z(t) ⊗ h(t−1) + (1− z(t))⊗ g(t) (7)

The terms W and b denote the weight matrix and the bias

terms, respectively. Two types of activation functions are used

by the fully-connected (FC) units namely: (i) σ(·), which is the

sigmoid activation function, and (ii) tanh(·) = 2σ · 2(x)− 1,

the hyperbolic tangent function. The terms ⊕ and ⊗ denote the

sum and dot products, respectively. The update gate z(t) helps

the model control the amount of historical information passed

to the next state. A reset gate r(t) controls the amount of past

information to forget. We note that a single gate controller

is used to control both the update gate and the input gate.

Whenever a new memory must be stored, its (storage) location

is erased first. Lastly, we also note the absence of an output

gate, and a full state vector is output at every time-step.

B. Temporal Prediction Model

Taking the observations in Section III-B into consideration,

we develop a GRU-based deep learning network to model

and predict the temporal GridFTP connection information

classified by user-role. The deep learning network will forecast

per-role connections for both CMS and LIGO users. The GRU

memory cell updates the current hidden state h(t) by combin-

ing the input and the past state as described in Equations 4–7.

To predict the future value Gk,t+1 = g(a1,··· ,a9),k,t+1, we rely

on past T observations, i.e.
∑t

τ=t−T Gk,τ . A 3-layer deep

RNN with 64, 32 and 16 GRU cells is used for forecasting

per user-role future connection values. We use a step-size of

seven (7) at the input layer. A dropout layer is added to final

hidden layer with a probability of 50% to avoid overfitting. We
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also note that Adam optimizer [37] was used with a training

batch size of 16, with a linear activation function at the output

layer.

C. Performance Evaluation

We compared our deep RNN model with two other time

series analysis and prediction methods. First, we compare the

prediction capabilities of our model with an Autoregressive

integrated moving average (ARIMA) [38] multi-step predictor.

ARIMA is a widely used method for time-series analysis and

forecasting [38]. An ARIMA model is selected by minimizing

the model’s Akaike Information Criterion (AIC). The ARIMA

model has three parameters: the AR model order p, the

MA model order q, and the differencing component d. The

model parameters (p,d,q) search-space is upper-bounded by

(10,2,10). Next, we compare our model with a deep multi-layer

perceptron (MLP) predictor consisting of three dense hidden

layer with 64, 32, and 16 fully connected units, a dropout

layer added to the final hidden layer with a probability of 50%,

hyperbolic tangent activation functions at the hidden layer and

linear activation at the output layer.

We compare the performance of our model with the ARIMA

and the MLP predictors using three widely used performance

metrics namely: (i) Mean Absolute Error (MAE), (ii) Mean

Squared Error (MSE), and (iii) the coefficient of determination

(r2 score). We have also presented the root mean squared

error (RMSE) for convenience. The dataset used in making

the predictions Gm (1-minute aggregate granularity), was

measured over 60 days and contained over 512,000 GridFTP

transfer connection records from six user-roles described in

Section III-A. This dataset was partitioned into a training

set and a validation set, categorized by user-roles. Next, we

present the prediction results of our deep RNN model and

compare it with ARIMA and MLP forecasting models.

D. Prediction Results and Discussion

The prediction results for the Dm dataset (downlink con-

nections 1-minute aggregate granularity) is shown in Figure 5.

Figures 5a, 5b, 5c and 5d show the actual vs. predicted con-

nection values for US CMS Pool, CMS Prod, CMS PhEDEx

and LIGO users, respectively. From the results, we see that

predicted results show a good fit with actual observations.

The prediction models’ performance categorized by user-role

is presented in Figure 6. Specifically, we present the MAE,

MSE, RMSW and r2 scores in the Figures 6a, 6b, 6c, and

6d, respectively. Our proposed model, depending on the user-

role, shows an improved error performance between 22.03%–

65.96%, 23.8%–92.6%, and 13.37%–72.87% regarding MAE,

MSE and RMSE, respectively over the ARIMA model. Our

model also shows r2 score improvements between 21.8%–

217.14% over the ARIMA model. Further, our model, in

comparison to the MLP model, shows an improved error

performance between 3.28%–62.8%, 5.88%–85%, and 2.93%–

62.36% regarding MAE, MSE and RMSE, respectively. It also

shows r2 score improvements between 8.06%–105.64% over

the MLP model. The above results show the effectiveness of

our GRU-based deep RNN model in making accurate GridFTP

connection load predictions. Also, importantly, the superiority

of our design ensures that it takes long-term temporal depen-

dencies into account. Such a system is vital in providing timely

intelligence to load balancing systems. In the next section,

we demonstrate how accurate per user-role predictions can be

effectively used to develop intelligent load balancing schemes

for the LVS [31] cluster.

VI. APPLICATION-AWARE LOAD BALANCING

Data-intensive science applications, with users interacting

with massive amounts of data, place dynamically varying

demands on the network infrastructure. However, conventional

campus network and supercomputing center architectures,

without a global view of the network, rely on load balancers

that are not precise. With the emergence of SDN, significant

research has gone into developing accurate load balancing

methods with better performance than their conventional al-

ternatives [20]. However, limited work has been done in de-

veloping efficient load balancers capable of handling massive

amounts of data transfers intelligently from high-throughput

distributed computing workflows.

The Linux Virtual Server (LVS) [31] is a high-availability,

highly-scalable load balancing solution built on a cluster of

real servers. The LVS architecture is fully transparent to end-

users/applications and behaves as a single high-performance

virtual server. LVS is a widely used open source load balancing

solution in many supercomputing centers. LVS implements

several load balancing schedulers including (weighted) round-

robin, (weighted) least-connections, source/destination hash-

ing, and locality-based least-connection schedulers. While

these schedulers perform adequately, they do not provide fine-

grained controls for intelligently balancing connection loads

based on application behavior.

The use of application-layer metadata benefits load balanc-

ing systems by allowing them to make intelligent decisions

based on application behavior. However, such application

metadata exchange is often limited or nonexistent. In the

following, we propose an intelligent load balancer that exploits

both application-awareness and predictive analytics knowledge

to provide fine-grained load balancing controls.

A. Application-aware Predictive Intelligent Load Balancer
(APRIL)

We propose APRIL, an application-aware, predictive,

intelligent load balancer. APRIL intelligently combines

application-layer metadata with deep learning predictive

analytics to create customized load balancing policies.

Our proposed approach is highly adaptable to both end-

user/application requirements and behavior while providing

fine-grained controls to the site administrator to prioritize or

isolate desired flows.

We demonstrate an approach that exploits application-

awareness and per user-role forecast information to maximize

GridFTP server utilization. The proposed approach, APRIL is

described in Algorithm 1. First, we define per-server maximum
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Fig. 5: Predicted values vs. Actual Dm measurements by user-role.
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Fig. 6: Prediction model performance categorized by user-role.

capacity and weights. The weights are used to decide the

preferred order of load distribution among the servers upper-

bounded by their capacity. The weights are (re)adjusted based

on the per user-role forecast information periodically to ensure

that the utilization is maximized. We formally define the

problem as:

Min.

(
Cn · Sk

Wk

)
, ∀n ∈ N, ∀k ∈ K (8)

where, Cn represents the number of connections across K
servers Sk, each weighted by Wk. The weight updates, Wk

for each server Sk is defined as:

Wk = ακκSk
×Wk−1 × |Cact|

|Cpred| , ∀k ∈ K, ∀ακ ∈ (0, 1] (9)

where, κSk
is the current server capacity; ακ is the capacity

threshold. Wk and Wk−1 are the current and previous weights,

respectively. Cact and Cpred represent the total current and

predicted connections, respectively. Each servers’ weights are

adjusted based on the predictions for that observation period.

By using application-layer metadata and per user-role forecast

information, we can maximize the server utilization by assign-

ing the appropriate weights for each server. The weights also

ensure that an appropriate number of connections live on each

server without exceeding the capacity (viz. controlled by ακ).

B. Results and Discussion

First, we present our experiences with the LVS weighted

least-connection (WLC) scheduling, which is the primary

scheduler used in our production U.S. CMS Tier-2 site.

Figure 7 shows the LVS WLC scheduling heatmaps for the

12 GridFTP servers (labeled GS1–GS12) in the production

network. The Figures 7a and 7b show the downlink and

uplink connection distribution, respectively, when LVS WLC
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Fig. 7: LVS weighted least-connection scheduling load distribution (15 Days).
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Fig. 8: APRIL scheduling load distribution (15 Days).

Algorithm 1 APRIL(G, Sk, αk)

Require: Connection dataset (G), Servers Sk, Capacity

threshold αk.

Output: Load distribution.

1: κS = αk · κSk
, ∀αSk

∈ (0, 1]
2: Wk = 1, ∀s ∈ Sk

3: for Cact ∈ G do
4: Compute Cpred,t+1 = RNN(Cact, τ), ∀τ ∈ (t− τ, t)
5: while Cact �= φ do
6: Find s ∈ Sk with the smallest κS

7: for s ∈ Sk do
8: if κS ≤ αk · κSk

then
9: s := {Cact,t,Wk}

10: Wk := ακκSk
×Wk−1 × |Cact|

|Cpred| , ∀k ∈ K
11: break
12: else
13: Find s | κS ≤ αk · κSk

14: end if
15: end for
16: Wk−1 := Wk

17: Cact := {Cact ∪ Cpred}
18: end while
19: end for

is used. The corresponding kernel density estimates (KDE)

shown in Figures 7c and 7c indicate that load is almost equally

distributed across all servers. The distribution performance of

our proposed method, APRIL, is shown in Figure 8. From

the heatmap shown in Figure 8a, we see that APRIL is

better at redistributing loads with an objective of maximizing

server utilization. This is also confirmed by the KDE in

Figure 8b, which shows the difference in probability density

for servers with increased utilization. Lastly, we show the

resulting daily percentage change effected by APRIL in each

server when compared to LVS WLC, in Figure 8c. We observe

that our approach simultaneously maximizes utilization (up to

11 times increase) in some servers while reducing utilization

significantly in others (a minimum of 0.54 times decrease).

The per-server (maximum and minimum) percentage change

averaged over 15 days is also presented in Figure 8d.

Although we have mainly presented the results by compar-

ing our approach with LVS WLC, we note that other LVS

scheduling algorithms were also evaluated during our experi-

ments. Specifically, we configured LVS to use three additional

schedulers on the production network namely: round-robin

(both pure and weighted), source hashing, and destination

hashing. Other than WLC, these other schedulers exhibited

unstable behavior for opportunistic transfers such as LIGO

workflows. This resulted in frequent dropped connections in

the production network and server loading problems, and

therefore we had to revert to WLC for stable network op-

eration.

VII. CONCLUSIONS

We proposed an application-aware intelligent load balancing

system (APRIL) for high-throughput data-intensive science

workflows such as CMS and LIGO. Our proposed solutions

used a real dataset representing 670 million GridFTP transfer

connections from a major U.S. CMS Tier-2 site. We presented

an extensive analysis of this dataset to identify long-term tem-

poral dependencies between different user-roles and workflow

memberships. Using the insights from the data analysis, we
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leveraged deep learning techniques for time-series modeling to

develop an application-aware predictive analytics system using

gated recurrent units (GRU) based recurrent neural network

(RNN). Our deep RNN predictive analytics system accurately

forecasts GridFTP connection loads and performs between

5.88%–92.6% better than ARIMA or multi-layer perceptron

(MLP) models. We then developed a novel application-aware,

predictive and intelligent load balancer, APRIL, that effec-

tively integrates application metadata and load forecast in-

formation to maximize server utilization. Through extensive

experiments, we demonstrated the effectiveness of APRIL

by comparing it with an existing production Linux Virtual

Server (LVS) cluster. We show that our approach improves

server utilization, on an average, between 0.5–11 times over

its LVS counterpart. Our future work will focus on developing

load balancing schemes that will consider a broader range of

application metadata parameters.

ACKNOWLEDGMENTS

This material is based upon work supported by the National

Science Foundation under Grant Numbers OAC-1541442 and

CNS-1817105. This work was completed using the Holland

Computing Center of the University of Nebraska, which

receives support from the Nebraska Research Initiative. The

authors would like to thank Garhan Attebury, Holland Com-

puting Center at UNL for his valuable support.

REFERENCES

[1] D. Kreutz, F. M. V. Ramos, P. E. Verissimo et al., “Software-Defined
Networking: A Comprehensive Survey,” Proc. of the IEEE, vol. 103,
no. 1, pp. 14–76, Jan 2015.

[2] L. Cui, F. R. Yu, and Q. Yan, “When big data meets software-defined
networking: SDN for big data and big data for SDN,” IEEE Network,
vol. 30, no. 1, pp. 58–65, January 2016.

[3] I. Monga, E. Pouyoul, and C. Guok, “Software-Defined Networking for
Big-Data Science - Architectural Models from Campus to the WAN,”
in 2012 SC Companion: High Performance Computing, Networking
Storage and Analysis, Nov 2012, pp. 1629–1635.

[4] Y. Han, S. s. Seo, J. Li et al., “Software defined networking-based traffic
engineering for data center networks,” in 16th Asia-Pacific Network
Operations and Management Symposium, Sept 2014, pp. 1–6.

[5] S. Jain, M. Khandelwal, A. Katkar et al., “Applying big data technolo-
gies to manage QoS in an SDN,” in 2016 12th Conference on Network
and Service Management (CNSM), Oct 2016, pp. 302–306.

[6] G. Wang, T. E. Ng, and A. Shaikh, “Programming Your Network at
Run-time for Big Data Applications,” in Hot Topics in Software Defined
Networks, ser. HotSDN ’12. ACM, 2012, pp. 103–108.

[7] P. Qin, B. Dai, B. Huang et al., “Bandwidth-Aware Scheduling With
SDN in Hadoop: A New Trend for Big Data,” IEEE Systems Journal,
vol. 11, no. 4, pp. 2337–2344, Dec 2017.

[8] D. Bonacorsi, “The CMS Computing Model,” Nuclear Physics B -
Proceedings Supplements, vol. 172, pp. 53 – 56, 2007.

[9] B. P. Abbott, R. Abbott, R. Adhikari et al., “LIGO: the Laser Interferom-
eter Gravitational-Wave Observatory,” Reports on Progress in Physics,
vol. 72, no. 7, p. 076901, 2009.

[10] W. Allcock, J. Bresnahan, R. Kettimuthu et al., “The Globus Striped
GridFTP Framework and Server,” in Supercomputing, 2005. Proc of the
ACM/IEEE SC 2005 Conference, Nov 2005, pp. 54–54.

[11] A. Dorigo, P. Elmer, F. Furano, and A. Hanushevsky, “XROOTD-A
Highly scalable architecture for data access,” WSEAS Transactions on
Computers, vol. 1, no. 4.3, 2005.

[12] I. Monga, E. Pouyoul, and C. Guok, “Software-defined networking for
big-data science - architectural models from campus to the wan,” in 2012
SC Companion: High Performance Computing, Networking Storage and
Analysis, Nov 2012, pp. 1629–1635.

[13] E. Dart, L. Rotman, B. Tierney et al., “The Science DMZ: A network de-
sign pattern for data-intensive science,” Scientific Programming, vol. 22,
no. 2, pp. 173–185, 2014.

[14] D. Nadig Anantha and B. Ramamurthy, “ScienceSDS: A Novel Software
Defined Security Framework for Large-scale Data-intensive Science,”
in ACM Security in Software Defined Networks & Network Function
Virtualization, ser. SDN-NFVSec ’17. ACM, 2017, pp. 13–18.

[15] D. Tuncer, M. Charalambides, S. Clayman et al., “Adaptive Resource
Management and Control in Software Defined Networks,” IEEE Trans.
on Network and Service Management, vol. 12, no. 1, pp. 18–33, March
2015.

[16] W. Jeong, G. Yang, S. M. Kim et al., “Efficient big link allocation
scheme in virtualized software-defined networking,” in 2017 13th Conf.
on Network and Service Management (CNSM), Nov 2017, pp. 1–7.

[17] T. Zinner, M. Jarschel, A. Blenk et al., “Dynamic application-aware
resource management using Software-Defined Networking: Implemen-
tation prospects and challenges,” in IEEE NOMS, May 2014, pp. 1–6.

[18] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436, 2015.

[19] K. Cho, B. Van Merrienboer, C. Gulcehre et al., “Learning phrase
representations using RNN encoder-decoder for statistical machine
translation,” in Conference on Empirical Methods in Natural Language
Processing. Assn. for Computational Linguistics, 2014, pp. 1724–1734.

[20] A. A. Neghabi, N. J. Navimipour, M. Hosseinzadeh et al., “Load
Balancing Mechanisms in the Software Defined Networks: A Systematic
and Comprehensive Review of the Literature,” IEEE Access, vol. 6, pp.
14 159–14 178, 2018.

[21] M. Zhang and H. Yu, “A New Load Balancing Scheduling Algorithm
Based on Linux Virtual Server,” in 2013 Intl. Conf. on Computer
Sciences and Applications, Dec 2013, pp. 737–740.

[22] K. Wu, X. Wang, H. Chen et al., “Improvement on LVS based IP
network connection status synchronization,” in IEEE Conference on
Software Engineering and Service Science, Sept 2015, pp. 746–749.

[23] J. Wang, J. Tang, Z. Xu et al., “Spatiotemporal modeling and prediction
in cellular networks: A big data enabled deep learning approach,” in
IEEE INFOCOM 2017, May 2017, pp. 1–9.

[24] P. Wang, S. Lin, and M. Luo, “A Framework for QoS-aware Traffic
Classification Using Semi-supervised Machine Learning in SDNs,” in
IEEE Conference on Services Computing, June 2016, pp. 760–765.

[25] F. Tang, Z. M. Fadlullah, B. Mao et al., “An Intelligent Traffic Load
Prediction Based Adaptive Channel Assignment Algorithm in SDN-IoT:
A Deep Learning Approach,” IEEE IoT Journal, pp. 1–1, 2018.

[26] J. Xu, J. Wang, Q. Qi et al., “IARA: An Intelligent Application-Aware
VNF for Network Resource Allocation with Deep Learning,” in 2018
15th IEEE SECON, June 2018, pp. 1–3.

[27] D. N. Anantha, Z. Zhang, B. Ramamurthy et al., “SNAG: SDN-managed
Network Architecture for GridFTP Transfers,” in 3rd Innovating the
Network for Data-Intensive Science (INDIS) ’16, SC16, Nov 2016.

[28] D. N. Anantha, B. Ramamurthy, B. Bockelman et al., “Differentiated
network services for data-intensive science using application-aware
SDN,” in 2017 IEEE ANTS, Dec 2017, pp. 1–6.

[29] W. Allcock, J. Bresnahan, K. Kettimuthu et al., “The globus extensible
input/output system (XIO): a protocol independent IO system for the
grid,” in 19th IEEE IPDPS, April 2005, p. 8.

[30] P. J. Brockwell and R. A. Davis, Introduction to Time Series and
Forecasting. springer, 2016.

[31] W. Zhang and W. Zhang, “Linux Virtual Server Clusters: Build highly-
scalable and highly available network services at low cost,” Linux
Magazine, vol. 11, 2003.

[32] Elastic Stack. [Online]. Available: https://www.elastic.co/products
[33] S. Hochreiter, Y. Bengio, P. Frasconi et al., “Gradient flow in recurrent

nets: the difficulty of learning long-term dependencies,” 2001.
[34] S. Hochreiter and J. Schmidhuber, “Long Short-term Memory,” vol. 9,

pp. 1735–80, 12 1997.
[35] A. Gers F., J. Schmidhuber, and F. Cummins, “Learning to Forget:

Continual Prediction with LSTM,” Tech. Rep., 1999.
[36] K. Greff, R. K. Srivastava, J. Koutnik et al., “LSTM: A Search Space

Odyssey,” IEEE Trans.Neural Networks and Learning Systems, vol. 28,
no. 10, pp. 2222–2232, Oct 2017.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[38] G. E. Box, G. M. Jenkins, G. C. Reinsel et al., Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

1917


