
ERGO: A Scalable Edge Computing Architecture
for Infrastructureless Agricultural Internet of Things

Deepak Nadig, Sara El Alaoui and Byrav Ramamurthy
Dept. of Computer Science & Engineering

University of Nebraska-Lincoln, Lincoln, NE, USA
{deepaknadig,sara,byrav}@cse.unl.edu

Santosh Pitla
Dept. of Biological Systems Engineering

University of Nebraska-Lincoln, Lincoln, NE, USA
spitla2@unl.edu

Abstract—In this paper, we propose ERGO (edge architecture
for Ag-IoT), an edge-computing architecture for infrastructure-
less smart agriculture environments. We also develop Ag-IoT
application APIs and the associated microservice infrastruc-
ture. Our implementation and evaluations show that ERGO
can operate independently of cloud-backed assistance, is highly
scalable, modular, and affords composability benefits to Ag-
IoT systems. We also demonstrate that ERGO outperforms
traditional infrastructure in response latencies and transactional
throughput, on average, by over 54% and 77%, respectively.

Index Terms—Edge Computing, Ag-IoT, Infrastructureless.

I. INTRODUCTION

With the emergence of the Internet of Things (IoT) in preci-
sion agriculture [1], [2], there is an increasing push towards in-
tegrating heterogeneous devices, machines and digital objects
with automation in the virtual world. Although IoT empowers
agriculture with smart and intelligent decision-making tools
to integrate agricultural implements, knowledge and services
for improved productivity and yield gains, critical challenges
exist. In-field sensors and imaging systems generate large
quantities of high-resolution datasets. Therefore, real-time data
processing to obtain valuable insights can be challenging
due to the lack of high-performance computing infrastructure,
locally. Numerous solutions propose using cloud resources for
data processing and decision-making insights, and they assume
the availability of adequate bandwidth and connectivity for
high-speed data movement. Thus, a key challenge is to provide
a scalable, low-cost edge computing solution for environments
(e.g., rural areas) characterized by limited/intermittent con-
nectivity that are typical of agricultural Internet of things (Ag-
IoT) ecosystems.

In this paper, we propose ERGO, a scalable edge com-
puting architecture for Ag-IoT environments. ERGO works
in connectivity-challenged environments, with limited (possi-
bly periodic) or no wide area network (WAN) connectivity.
Further, due to limited hardware resources available to edge
computing infrastructure, we design ERGO to be highly com-
posable and scalable to handle the dynamic needs of Ag-IoT.

II. ERGO ARCHITECTURE

Our proposed ERGO architecture, shown in Figure 1, com-
bines container orchestration with scalable web-services to
provide Ag-IoT services over RESTful APIs. Our proposed

architecture is shown in Figure 1a. It shares some common
elements with existing edge-cloud solutions such as recon-
figurable compute/storage/networking, standardized APIs for
application containerization and security features. However,
unlike edge-cloud solutions, our architecture is designed to
work in resource-constrained environments with limited com-
putational, network bandwidth and power/energy resources.
Thus, we focus on seamless operation in a network with het-
erogeneous protocols and diverse topologies, while addressing
the challenges of intermittent/disconnected operation.

As shown in Figure 1, the ERGO operator can man-
age application/service deployments through the Kubernetes
(K8s) [3] operations APIs and can schedule workloads dy-
namically. The service framework exposes application APIs to
the in-field devices. In-field devices can interact with ERGO
either directly or through an IoT API aggregation gateway.
The service framework also provides the ability to compose
multiple applications into a single end-user service.

A. Disconnected/Intermittent Connectivity Operations

While the container orchestration platform allows for dy-
namically managing microservices, disconnected/intermittent
connectivity creates new challenges that require special con-
siderations to ensure seamless operation in the event of service
failures. ERGO deploys a local image registry and scheduler
service to ensure the availability of the application images
and data to all nodes in the ERGO edge computing cluster.
We also employ an image migration service to update both
cluster management and application images periodically.

We implement our APIs on the Flask WSGI [4] framework.
For interactive use, we also expose the API documentation
using Swagger. Further, we employ response marshalling
features to format, filter and render expected payload re-
sponses. To ensure modularity and to allow for namespace
reuse and scalability, we use namespaces to organize the
function-specific APIs. We use Flask Blueprints to manage
API endpoint prefixes.

III. RESULTS AND DISCUSSION

We evaluate the performance of ERGO service framework
by load-testing ERGO applications and comparing it with
traditional infrastructure comprising of a single monolithic
server (labeled “single-node”) with fixed applications. Our

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
Lo

ca
l a

nd
 M

et
ro

po
lit

an
 A

re
a

N
et

w
or

ks
 (L

A
N

M
A

N
) |

 9
78

-1
-6

65
4-

45
79

-5
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
LA

N
M

A
N

52
10

5.
20

21
.9

47
88

11

Authorized licensed use limited to: Purdue University. Downloaded on September 08,2021 at 17:04:16 UTC from IEEE Xplore. Restrictions apply.

Node N
Node 2

Node 1

Pods

Kubelet Proxy

z

API Server

Scheduler

Controller

Master Node

etcd

Edge ComputeIn-Field Devices

S3 S4

IoT API
Gateway

S1

S2

Admin

Load
Balance

Microservice Microservice

ERGO Application API

Operations API

Storage

Monitor

Load BalancerK8s API

ERGO REST API
Device Protocols

(a) ERGO Architecture.

API Requests

Task Queue Message
Broker

Workers Storage

Fr
on

te
nd

Load Balancer

(b) ERGO Microservices.

Fig. 1: Our ERGO Edge Computing Architecure.

0 200 400 600 800 1000
0

3

6

9

12

15

18

Av
g.

 R
es

po
ns

e
Ti

m
e

(s
)

#Concurrent API requests

 Single-Node
 ERGO Autoscaling

(a) ERGO API response times.

0 200 400 600 800 1000
0

25

50

75

100

Pe
ak

 T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

#Concurrent API requests

 Single-Node
 ERGO Autoscaling

(b) ERGO API throughput.

0 200 400 600 800 1000
85

90

95

100

 Success (Single-Node)
 Error (Single-Node)
 Success (ERGO Scaled)
 Error (ERGO Scaled)

#Concurrent API requests

Su
cc

es
s

(%
)

0

5

10

15

Er
ro

r (
%

)

(c) Service success/failure rates.

Fig. 2: Performance evaluation of the Ag-IoT Application APIs.

evaluation framework consists of an IoT API gateway node
interacting with the ERGO cluster wirelessly. We employ
Apache JMeter [5] for functional load testing and evaluation.
Our ERGO cluster allocates application/service deployments
on 4 worker nodes, each with 4 cores and 4GB RAM.
We evaluate ERGO performance using a single microservice
deployment. We limit the hardware resources to 250 millicores
and 512MB of RAM per service. We then evaluate the
performance by sending a fixed number of concurrent API
requests for 30 seconds. We repeat the test by increasing the
number of concurrent API requests to range between 100
to 1,000/second. From Figure 2a, we observe that ERGO
reduces the average response time (between 48% − 62%,
and about 54% on average) in comparison to the single-node
infrastructure. Further, with autoscaling, we see an increase
(between 57%−108%, and about 77% on average) in the peak
transactions per second, leading to increased API throughput
as shown in Figure 2b.

IV. CONCLUSIONS

In this paper, we present ERGO, an edge comput-
ing architecture for Ag-IoT environments characterized by
limited/intermittent internet connectivity. We develop edge-
enabled Ag-IoT services that are modular, composable, and

highly scalable in heterogeneous, resource-constrained envi-
ronments, which can augment highly instrumented Ag-IoT
environments. Our exemplary applications and extensive per-
formance evaluations demonstrate the efficacy of our proposed
architecture In comparison to traditional architectures, on aver-
age, our proposed ERGO solution improves peak transaction
throughput by over 77% and reduces response latencies by
over 54%. Our future work will focus on developing a wider
range of Ag-IoT microservices including machine learning
workloads for the ERGO cluster.

ACKNOWLEDGMENTS

This material is based upon work supported in part by the
National Science Foundation under Grant No. CNS-1817105.

REFERENCES

[1] O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and M. N. Hindia,
“An overview of internet of things (iot) and data analytics in agriculture:
Benefits and challenges,” IEEE Internet of Things Journal, vol. 5, no. 5,
pp. 3758–3773, Oct. 2018.

[2] C. Brewster, I. Roussaki, N. Kalatzis, K. Doolin, and K. Ellis, “IoT in
Agriculture: Designing a Europe-Wide Large-Scale Pilot,” IEEE Commu-
nications Magazine, vol. 55, no. 9, pp. 26–33, September 2017.

[3] E. A. Brewer, “Kubernetes and the Path to Cloud Native,” in 6th ACM
Symposium on Cloud Computing. ACM, 2015.

[4] “Flask (A Python Microframework),” https://flask.palletsprojects.com/,
accessed: 2021-04-12.

[5] “Apache JMeter,” https://jmeter.apache.org/, accessed: 2021-04-12.

Authorized licensed use limited to: Purdue University. Downloaded on September 08,2021 at 17:04:16 UTC from IEEE Xplore. Restrictions apply.

		2021-07-09T16:00:36-0400
	Preflight Ticket Signature

