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Increasingly, campus networks manage a multitude of large-scale data transfers.

Big data plays a pivotal role in university research and impacts engineering,

agriculture, natural sciences, and humanities. Campus network infrastructures

support multiple network management goals, including commodity internet traffic

and high-performance networks for scientific research. These goals often impose

conflicting requirements on network design and management, and therefore,

networks optimized and specially engineered for data-intensive tasks are necessary.

Further, many aspects of campus networks are hard to change without impacting

regular network operation. Over the years, numerous solutions have focused on

the management and security of large-scale data transfers. These solutions severely

degrade data transfer performance or result in data flows completely bypassing

the campus network management and security controls.

This dissertation will study application-aware architectures and present soft-

ware defined networking (SDN) and network functions virtualization (NFV) solu-

tions for data-intensive science. Our proposed application-aware SDN solutions

span network monitoring, management, service differentiation, and security for

data-intensive applications. We first propose a novel application-aware architec-

ture called SNAG (SDN-managed Network Architecture for GridFTP transfers).



SNAG combines application-awareness with SDN-enabled network management to

classify, monitor and manage network resources actively. At HCC, we also demon-

strate how our system ensures the quality of service (QoS) for high-throughput

workflows such as Compact Muon Solenoid (CMS) and Laser Interferometer

Gravitational-Wave Observatory (LIGO). Next, we develop a novel application-

aware flow reduction (AAFR) algorithm to optimally map service function chains

(SFC) to multiple data centers while adhering to the data center’s capacity con-

straints. We then present an application-aware intelligent load balancing system

for high-throughput, distributed computing workflows. Our solution integrates

with a major U.S. CMS Tier-2 site. Lastly, by developing a scalable application-

aware edge computing framework, we focus on building reliable service-to-service

communication across distributed infrastructures using a service mesh architecture.

By building application-aware architectures and evolving data-intensive applica-

tions to collaboratively and securely share application-layer metadata with the

network-layer, we pave the way for intelligent networks that are secure, automated,

dynamically composable and highly scalable.
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Chapter 1

Introduction

The Internet today can be envisioned as a three-tier network. At the very top, we

have applications generating massive amounts of information. The middle-tier is

responsible for providing structure to the data from the application-layers using

the internet protocol (IP) stack. Finally, the bottom-tier carries the information

over a high-speed, distributed physical network. Applications exhibit diverse

characteristics and place varying demands on network resources. Software defined

networking (SDN) [1] and network functions virtualization (NFV) [2] along with

advances in cloud computing makes building intelligent networks possible.

Typically, campus network infrastructures support multiple network traffic

management goals. Commonly supported network traffic types include the fol-

lowing:

• Commodity internet traffic to support routine business tasks such as email

and web

• High-performance networks for tasks associated with the scientific research

process such as data retrieval, storage, and analysis from external sources

• Specialized (possibly separate) networks to meet specific project/workflow

requirements like confidentiality, privacy, and anonymity.
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These goals often impose conflicting requirements on network design and man-

agement. For example, networks designed for routine tasks such as email or web

browsing are incapable of supporting large-scale data movement for data-intensive

science. In this context, networks optimized and specially engineered for data-

intensive tasks are necessary, without which, significant performance degradations

would result. Further, many aspects of campus networks are hard to change

without impacting normal network operation.

Increasingly, campus networks manage a multitude of large-scale data transfers.

Big data plays a pivotal role in university research and impacts domains such

as engineering, agriculture, natural sciences, and humanities. Over the years,

numerous solutions have been proposed to manage and secure large-scale data

transfers efficiently. Examples include optimized middlebox management, the

inclusion of security policies at the network edge, and the Science Demilitarized

Zone (Science DMZ). These solutions severely degrade data transfer performance

or result in data flows completely bypassing the campus network management

and security controls.

Campus networks, traditionally, are designed to handle a large number of small

traffic flows and are ill-suited for high-volume science data transfers. Sharing

campus network resources with scientific data transfers has many disadvantages.

First, packet loss that is tolerated by campus local area networks (LAN) generally

lead to severe performance degradations with bulk data transfers. Second, the wide

area network (WAN) latency effects come into play reducing TCP performance.

Lastly, campus network security controls optimize the security of small flows while

sacrificing performance and therefore do not meet the stringent requirements for

large data transfers over the WAN. SDN and NFV pave the way for novel traffic

engineering methods that can overcome the limitations of traditional campus
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networks. SDN and NFV architectures [3] are used successfully in big data

environments for network management [4], QoS provisioning [5], and network

design [6].

In this work, we study existing architectures for data-intensive applications,

their implementation, strengths, and weaknesses. Next, we present SDN and

NFV-based solutions for data-intensive applications. Our proposed software

defined networking solutions span network monitoring, network management, service

differentiation, and security for data-intensive applications.

1.1 Data-Intensive Science

Data-intensive science relies on massive amounts of data obtained from scientific

studies (both experimental studies and simulation). Many science domains are

data-intensive and data-driven. They rely on data acquisition, storage, and analysis

for advancing fundamental research. Example data-intensive science domains are

high energy physics (HEP), climate sciences, biology/genomics, combustion and

light sources. In this section, we briefly summarize the big data challenges of

different science domains.

High energy physics (HEP) is data-intensive, as advances in this domain require

measuring the probability of “interesting events” in a large set of observations

(typically 1016 or more particle collision observations in a year). The CMS (compact

muon solenoid) [7] and ATLAS (A Toroidal LHC ApparatuS) [8] experiments at

the large hadron collider (LHC) generate massive amounts of data (∼ 10 petabytes

per year). The ATLAS experiment currently stores over 100 petabytes of data

and it is growing rapidly. The HEP community faces two important challenges

namely: i) real-time data reduction, and ii) distributed data processing, analysis,
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and distribution. The massive volume of analog data generated by the CMS and

ATLAS detectors must be reduced in real-time to ensure that it can be stored at

an acceptable cost. Furthermore, the data must be shared/distributed worldwide

with scientists for further processing and analysis.

Climate science is another example of a data-intensive science domain that

critically depends on large amounts of data available from heterogeneous sources

worldwide. Sophisticated models of physical processes and interaction between

realms (e.g., atmosphere, land, sea) are used by collaborative, multi-disciplinary

teams to achieve scientific progress. Example data sources include advanced

radiation measurement (ARM) sites and earth observing system (EOS) of satellites.

The data from different sources is subject to (near) real-time processing and made

available to numerous communities such as scientists, industry, policy-makers, etc.

Other data-intensive domains include the advanced photon source (APS) at

Argonne national labs (ANL) and the linac coherent light source (LCLS) facility at

SLAC National Accelerator Laboratory. Light sources are used by scientists from

many domains ranging from material science to paleontology. Similar to the above

domains, there is a strong need for collaborative and high-performance ecosystem

at these light source facilities.

Popular services/frameworks for bulk data movement supporting scientific

users include: i) The Globus Online service built with the GridFTP [9] protocol,

and ii) the XROOTD [10] framework. These protocols and services integrate with

data transfer nodes (DTNs) and high-speed parallel filesystems such as Lustre or

GPFS. The DTNs are purpose-built for bulk WAN data transfers and typically have

high-speed network interfaces (40/100 Gbps). In the following section, we describe

some exemplary architectures for data-intensive science. These architectures

integrate many networking components including SDN, virtual circuits, DTNs,
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policy frameworks, etc. We also describe the architectural approach for securing

high-volume transfers associated with data-intensive science.

1.2 Exemplary Data-Intensive Science Architectures

Many architectures have been proposed to support high-performance data transfers

for science applications. These architectures try to meet both operational and

security requirements while ensuring simplicity and scalability. Some example

architectures are Science DMZ [11], SciPass [12], ScienceSDS [13], Medical Science

DMZ [14], etc.

Figure 1.1: The Science DMZ Architecture (Source: ESNet).

The science DMZ [11] is a scalable network architecture for data-intensive

science, built at or near an organization’s local network perimeter. The architecture

was developed by ESnet to address the network performance problems associated

with high-volume, bulk data transfer needs of science applications. The Science

DMZ integrates four key components including a network architecture distinct

from general-purpose networks, a dedicated system for data transfers, a perfor-
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mance measurement and network testing system, and policies and enforcement

mechanisms for security. The architecture is shown in Figure 1.1. In this architec-

ture, the DTN is connected directly to the border router. A crucial distinction of

this approach is that the offsite data traverses only two devices, the border router,

and the Science DMZ switch/router. The DTN is responsible for efficient WAN

data movement, and access control lists enforce security policies for the DTN,

without the need for a separate firewall.

SciPass [12] is a 100 Gbps capable SDN-based approach to Science DMZ. It

combines an adaptive intrusion detection system (IDS) and dynamic traffic filtering

to overcome the challenges posed by campus network firewalls. SciPass combines

an SDN controller, a cluster of IDS sensors, a PerfSONAR host, and a firewall

with a DTN to identify and filter flows. Policy definitions are used to determine

whether flows can bypass the campus firewall controls.

Recently, a medical science DMZ was proposed by the authors in [14]. The

proposed solution enables secure, high-volume data transfers of sensitive datasets

between organizations while adhering to security and privacy regulations such as

Health Insurance Portability and Accountability Act (HIPAA) [15]. The medical

science DMZ re-engineers the science DMZ for use with restricted data by creating

a secure, high-capacity, data-intensive portion within each organization. The trust

relationships at each organization are used to ensure secure data movement to the

appropriate computing facility.

Although these architectures provide adequate security and improve network

performance for large-volume data transfers, they have some limitations. The

science DMZ approach requires networks that are free of packet loss and state-

ful packet processing. While science DMZ performs selective monitoring and

inspection of flows, it is not sufficient to detect all attacks. SciPass relies on IDS to
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identify flows, and can, therefore, be ineffective when end-to-end data transfers

are encrypted. In this dissertation, we develop novel solutions for monitoring,

managing and securing large-scale data transfers at Holland Computing Center,

University of Nebraska-Lincoln, a U.S. CMS Tier-2 site.

1.3 Application-Awareness

Existing architectures for securing data-intensive science rely on stateful packet

processing techniques like deep packet inspection (DPI) or intrusion detection

system (IDS) to classify packets/flows. These techniques are ineffective and place

an undue burden on middleboxes due to the massive amounts of data transferred

between end-points. Further, stateful packet processing can result in packet

losses and increased detection latencies, thereby reducing the reliability of such

techniques.

We take a unique approach to solving the above problems while minimizing

the performance degradation effects of network middleboxes. In this dissertation,

we develop an application-aware architecture to facilitate the secure exchange

of application metadata with the network-layer. Our experience with deploying

application-aware solutions for network monitoring, management and security

have shown not only the benefits but also the reliability of our approach. Our novel

application-awareness approach has been successfully employed in network moni-

toring, network management, and network security solutions for data-intensive

science workflows. In the following, we outline a few networking research areas

that have benefited from our application-awareness approach.
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1.3.1 Secure and Reliable Flow Identification using Application-Awareness

As relying on stateful packet inspection for identifying large-volume flows is

ineffective, we proposed SDN-managed network architecture for GridFTP transfers

(SNAG) [16] (See Chapter 2). SNAG, unlike other approaches, relies on the

exchange of application-layer metadata with the network-layer to provide flow

intelligence to the network management system. Application-awareness, from the

GridFTP servers in this case, is enabled by exposing a secure application program

interface (API) from a trusted GridFTP process. The GridFTP server automatically

forwards application metadata to the SDN controller. All GridFTP connection

metadata including source/destination addresses, port pairs, session information,

etc., are used by the network layer to identify and classify all active flows reliably.

This flow identification and classification is vital to the network operator to ensure

that appropriate security policies and enforcement mechanisms are defined.

1.3.2 Large-scale Data Transfer Monitoring, Management and Service Differ-

entiation

SNAG, using an application-aware approach to traffic classification, helped us de-

velop a unique monitoring system for data-intensive science. Our SNAG-enabled

monitoring system can monitor, in real-time, CMS and LIGO (laser interferome-

ter gravitational-wave observatory) flows. Application-layer metadata from the

GridFTP servers are used to create fine-grained monitoring views. These views pro-

vide additional insights into data-intensive science transfers such as user/project,

workflow, and file statistics. The monitoring views created using application-

awareness cannot be obtained using traditional methods that use stateful packet

processing. This is due to the encrypted nature of GridFTP connections. At the
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Holland Computing Center (HCC), UNL, we have used SNAG to classify over 1.5

billion connections successfully.

Further, we have used the traffic classification information provided by SNAG

to achieve service differentiation [17]. For example, flows identified by SNAG can

be individually subject to different quality of service (QoS) policies. Through the

secure exchange of application metadata with the network layer, intelligent and

adaptive network management decision-making is possible. Also, we can exploit

application-layer metadata to define security policies for application flows more

accurately.

1.3.3 An SDN/NFV Approach to Optimized Service Chain Mapping and Se-

curing Data-Intensive Science Transfers

Network Function Virtualization (NFV) brings a new set of challenges when de-

ploying virtualized services on commercial-off-the-shelf (COTS) hardware. We

can dynamically manage network functions to provide the necessary services

on-demand. Further, services can be chained together to form a larger composite.

Application-awareness is beneficial when mapping service function chains (SFCs)

across different data centers with the objective of reducing the flow processing

costs. The SFC mapping problem is critical to enhancing the virtualized service

networks’ performance, as it places high demands on the performance of these

service functions. Application-aware architectures can also secure data-intensive

science workflows. Using the traffic classification information, we developed Sci-

enceSDS [13]. ScienceSDS is a software-defined security framework that employs a

virtualized security services infrastructure to provide security-as-a-service for data-

intensive science. Here, we use the traffic classification information to redirect only

flows of interest intelligently to virtualized security services. Unlike traditional
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middleboxes and security appliances, our approach using virtualized services is

highly scalable. The SNAG application-aware approach also forms an important

component of our GridFTP transfer anomaly detection system proposed in the

work in [18].

1.3.4 Predictive and Intelligent Load Balancing using Application-Awareness

Application-layer information is valuable when developing intelligent load-balancing

solutions to improve server utilization. We can combine application-aware SDN

with machine learning approaches to model large data transfers in the campus

network. A multi-layer deep learning network can automatically discover data

representations that can then be used to infer information from the dataset without

the need for complex analysis. We can successfully employ application-aware

architectures with SDN to model and forecast network information using repre-

sentational learning techniques such as machine learning and deep learning. The

resulting predictors can aid in network resource allocation. Load balancing forms

a critical component of big data network architectures as they directly influence

application response times and maximize throughput via optimized traffic delivery

to the application servers. Large-volume data transfers associated with big data

provides many opportunities for understanding usage patterns and gain insights

into network resource requirements. Rather than viewing big data systems as

placing an undue burden on campus networks, we can exploit the insights gained

in better understanding user/traffic demands. This results in optimized resource

allocation to better serve the needs of campus network users.
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1.3.5 Optimized Service Delivery in Distributed Service Mesh Architectures

Cloud computing has led to the development of new paradigms for application

deployments and service delivery. Service instantiation, deployment and rapid

service delivery in cloud native environments increasingly rely on microservice

architectures. To take full advantage of cloud native microservice architectures

automated microservice deployment and orchestration systems that optimize ser-

vice placement are necessary. Such orchestration systems should carefully map

the available network resources with the deployed services to ensure optimum

end-to-end service performance. Therefore, a critical challenge is to ensure reli-

able service-to-service communication across distributed infrastructures. Network

service meshes have emerged as a useful pattern to enable inter-service communi-

cation by providing an addressable infrastructure layer. Service meshes can also

provide several advanced features including declarative control over service behav-

ior using a policy-based configuration, service traffic visibility, service resilience,

service discovery and security. While container orchestrators focus on workload

management, scheduling, health monitoring and discovery, a service mesh focuses

on mitigating unmet service-level requirements. Service meshes ensure secure

service-to-service communication and service discovery across distributed infras-

tructures using a network of sidecar containers or proxies. These sidecars/proxies

form the service mesh data plane and are responsible for relaying traffic securely

between services and client endpoints. Further, they are combined with ingress

(reverse proxy) and egress (forward proxy) gateways to control inbound and

outbound traffic, respectively.
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1.4 Contributions

The research presented in this dissertation focuses mainly on the broad topic of

application-layer and network-layer collaboration for network monitoring, man-

agement and security. Application-layer and network-layer collaboration, referred

to as “application-awareness,” is the exchange of application-layer metadata with

the network-layer. We can optimize network-layer functionality and decision-

making by using real-time information about the applications that connect to it.

As academic campus networks support large-scale data transfers for data-intensive

science, application-awareness is particularly useful to securely identify, manage,

and monitor traffic flows.

Large-scale data transfer workflows for data-intensive science rely on high-

performance, scalable, and reliable protocols for moving large amounts of data over

a high-bandwidth, high-latency network. GridFTP is a widely used protocol for

wide area network (WAN) data movement. However, as the GridFTP protocol does

not share connection information with the network-layer, network operators have

reduced flexibility, particularly in identifying/managing flows across the network.

In Chapter 2, we address this problem by deploying a production “application-aware”

software defined network (SDN) for managing GridFTP transfers for data-intensive

science workflows. We first propose a novel application-aware architecture called

SNAG (SDN-managed Network Architecture for GridFTP transfers). SNAG com-

bines application-awareness with SDN-enabled network management to classify,

monitor and to manage network resources actively. Until now, our SNAG deploy-

ment has successfully classified over 1.5 Billion GridFTP connections at the Holland

Computing Center (HCC), University of Nebraska-Lincoln (UNL). Next, we de-

velop an application-aware SDN system to provide differentiated network services
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for distributed computing workflows. At HCC, we also demonstrate how our

system ensures the quality of service (QoS) for high-throughput workflows such

as Compact Muon Solenoid (CMS) and Laser Interferometer Gravitational-Wave

Observatory (LIGO). Further, we also demonstrate how application-aware SDN

can be exploited to create policy-driven approaches to achieve accurate resource ac-

counting for each workflow. We present strategies for implementing differentiated

network services and discuss their capacity improvement benefits. Lastly, we pro-

vide some guidelines and recommendations for developing application-aware SDN

architectures for general-purpose applications. This work was published in the

Third Workshop on Innovating the Network for Data-Intensive (INDIS) at Super-

computing 2016 [16], and at the 2017 IEEE International Conference on Advanced

Networks and Telecommunications Systems (ANTS) [17]. An extended version of

this work has been submitted to the IEEE/ACM Transactions on Networking and

is currently under review.

In Chapter 3, we address an important problem of mapping service function

chains (SFCs) across different data centers with the objective of reducing the flow

processing costs. The SFC mapping problem is critical to enhancing the virtualized

service networks’ performance, as it places high demands on the performance of

these service functions. First, we develop an integer linear programming (ILP)

formulation to optimally map service function chains to multiple data centers

while adhering to the data center’s capacity constraints. Next, we propose a

novel application-aware flow reduction (AAFR) algorithm to simplify the ILP to

significantly reduce the number of flows processed by the SFCs. We study the

SFC mapping problem for multiple data centers and evaluate the performance

of our proposed approach with respect to three parameters: i) impact of number

of SFCs and SFC length on flow processing cost, ii) capacitated/uncapacitated
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flow processing cost gains, and iii) balancing flow-to-SFC mappings across data

centers. This work has been published in the 2018 4th IEEE Conference on Network

Softwarization (NetSoft) [19]. An extended version of this work has been submitted

to the Elsevier Computer Networks Journal and is currently under review.

In Chapter 4, we propose an application-aware intelligent load balancing

system for high-throughput, distributed computing, and data-intensive science

workflows. We leverage emerging deep learning techniques for time-series mod-

eling to develop an application-aware predictive analytics system for accurately

forecasting GridFTP connection loads. Our solution integrates with a major U.S.

CMS Tier-2 site; we use a real-world dataset representing 800 million GridFTP trans-

fer connections measured over 2 years to drive our predictive analytics solution.

First, we perform extensive analysis on this dataset and use the connection loads

as an example to study the temporal dependencies between various user roles and

workflow memberships. We use the analysis to motivate the design of univariate

and multivariate deep recurrent neural network (RNN) models for understanding

the long-term temporal dependencies and predicting connection loads. We explore

two RNN techniques for GridFTP load forecasting, namely long short-term mem-

ory (LSTM) and gated recurrent unit (GRU) based deep learning networks. We

develop a novel application-aware, predictive and intelligent load balancer, APRIL,

that effectively integrates application metadata and load forecast information to

maximize server utilization. We conduct extensive experiments to evaluate the

performance of our deep RNN predictive analytics system and compare it with

other approaches such as ARIMA and multi-layer perceptron (MLP) predictors.

Lastly, we also demonstrate the effectiveness of APRIL by comparing it with the

load balancing capabilities of an existing production Linux Virtual Server (LVS)

cluster. This work has been published in the 2018 IEEE International Conference



15

on Advanced Networks and Telecommunications Systems (ANTS) [20] and the

IEEE INFOCOM 2019 - IEEE Conference on Computer Communications [21]. An

extended version of this work has been submitted to the IEEE Transactions on

Network and Service Management is currently under review.

Chapter 5 proposes a scalable edge computing architecture, ERGO, for envi-

ronments characterized by limited and intermittent connectivity. We demonstrate

ERGOs’ effectiveness in an agricultural IoT setting, present an exemplary image

processing application, and examine its computational and service requirements.

We design ERGO for connectivity-challenged environments with limited (possibly

periodic) or no wide area network (WAN) connectivity. ERGO also provides

representational state transfer (REST) application programming interfaces (APIs)

for various management and end-user tasks. Therefore, ERGO combines container

orchestration systems with web-services APIs to provide scalable, edge-enabled

services. Our implementation and extensive evaluations show that ERGO can

operate independently of cloud-backed assistance, is highly scalable, modular,

and affords composability benefits to Ag-IoT systems. Next, we present a gener-

alized service performance measure (GSPM) for multi-cluster distributed service

mesh architectures. As service mesh architectures gain popularity, optimized

service-to-service communication is vital for ensuring quantifiable end-to-end

service performance. Real-world service mesh deployments often employ perfor-

mance metrics that exhibit large variability across clusters. However, service traffic

forwarding decisions in a service mesh rarely rely on localized (i.e., in-cluster)

performance metrics, thereby skewing routing decisions in favor of latency rather

than overall service performance. To solve this problem, we propose a generalized

service performance measure (GSPM) that provides a metric- centric view of ser-

vice performance. First, we present the average service distance (ASD) measure
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and analyze its performance by modeling two prominent service mesh structures.

Next, we develop GSPM by augmenting the average service distance with local-

ized metrics that are representative of the service/workload performance. Lastly,

we demonstrate the effectiveness of our proposed GSPM-based dynamic routing

approach by evaluating it on a real-world service mesh testbed. Our preliminary

work on ERGO was presented at the 3rd USENIX Workshop on Hot Topics in Edge

Computing (HotEdge 20) [22]. This work appears in the 2021 IEEE LANMAN

conference [23].

1.5 Organization of the Dissertation

This dissertation is organized as follows: First, we present our novel application-

aware architecture, SNAG, and its applications to SDN-based network monitoring,

management and service differentiation in Chapter 2. In Chapter 3, we develop an

integer linear programming (ILP) formulation to optimally map service function

chains (SFC) to multiple data centers. We also present a novel application-aware

flow reduction (AAFR) technique to reduce the SFC flow processing costs. Next,

in Chapter 4, we propose APRIL, an application-aware intelligent load balancing

solution for high-throughput, distributed computing, and data-intensive science

workflows. APRIL effectively integrates application metadata and deep learning

predictors to forecast GridFTP server loads and maximize server utilization. In

Chapter 5, we propose ERGO, a scalable edge computing architecture for agri-

cultural IoT environments. We also present a comprehensive model for network

service meshes and develop an average service distance measure for two dominant

service mesh structures. Further, we develop a generalized service performance

measure to quantify and evaluate acceptable end-to-end service performance
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bounds. Lastly, we conclude our work and describe the future work in Chapter 6.
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Chapter 2

SNAG: SDN-managed Network Architecture for GridFTP

transfers using Application-Awareness

2.1 Introduction

Data-Intensive science workflows transfer large amounts of data and are often

characterized by high-throughput distributed computing workflows. Examples of

such workflows include data transfers from the Compact Muon Solenoid (CMS)

[7], a particle physics detector at CERN, and the Laser Interferometer Gravitational-

Wave Observatory (LIGO) [24] experiment developed for detecting cosmic gravi-

tational waves. These workflows depend heavily on high-speed networking and

high-performance computing/storage for analysis tasks. Dedicated high-speed

networks including the Energy Sciences Network (ESnet) and the Internet2 infras-

tructure provide the necessary network resources and generalized frameworks

for these workflows. Recent advances in SDN and OpenFlow [25] allow network

applications to create and manage fine-grained network control policies. Such

fine-grained control can influence policy-based decision-making for traffic manage-

ment/monitoring, differentiated network services, and security. Although using

dynamic resource allocation (e.g. OSCARS [26]) or software defined networking

can improve the end-to-end data transfer performance of scientific workflows,
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numerous problems exist with resource management and providing differenti-

ated services in the campus network. The HCC at UNL is a U.S. CMS Tier-2

site (henceforth referred to as the “site”) performing frequent CMS transfers to

Fermilab. In this work, we present an application-aware SDN and a policy-driven

approach to classifying, monitoring and actively managing network resources for

data-intensive science projects at the experiment level while allowing for accurate

accounting of site-wide resources.

We propose SNAG (SDN-managed Network Architecture for GridFTP trans-

fers), a novel application-aware SDN architecture for managing GridFTP transfers.

We present a detailed description of SNAG and combine application- and network-

layer collaboration with SDN-enabled network management to monitor, manage,

and account for network resources used by GridFTP transfers. We expose an

Application Program Interface (API) between the trusted GridFTP process and

the network layer, allowing the network to accurately and reliably track flows

via application metadata. We then develop a differentiated network services so-

lution (site-level) using SNAG to provide quality of service (QoS) to flows from

different data-intensive science workflows at HCC. We also demonstrate a policy-

driven approach to network monitoring, management, QoS, and accounting for

data-intensive science workflows at HCC.

2.1.1 Contributions and Organization

Our contributions are outlined below:

1. Site-wide GridFTP traffic classification and monitoring: We deploy an SDN-based

network architecture to effectively and securely classify/monitor GridFTP

traffic and describe SNAG implementation on our project testbed.
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2. Monitoring views from Application- and Network-layer collaboration: We demon-

strate how SNAG exploits application- and network-layer coordination to

create unique and real-time network monitoring views. These views cannot

be achieved using traditional networking techniques due to the encrypted

nature of the transfers.

3. Application-aware QoS: We develop an application-aware approach to pro-

vide differentiated network services and QoS, thus enabling active network

management and traffic prioritization. Moreover, we achieve greater control

over data-transfer workflows where priorities are applied to individual users

and/or experiments. Using SNAG, service differentiation and QoS is applied

to network traffic based on application-layer metadata.

4. Policy-driven network management: By defining per-flow policies, we develop

a policy-driven approach to network management. We demonstrate how

this approach can handle both opportunistic and scheduled data transfers at

HCC.

5. We demonstrate the scalability of our solution by deploying SNAG on a

project testbed network at HCC that has been set up to integrate with a U.S.

CMS Tier-2 site.

This chapter is organized as follows: Section 2.2 presents the motivation and

the related work; Section 2.3 provides the overall context of this work within the

SDN field for experimental science data transfers and provides a brief introduction

to application-aware SDN; Section 2.4 presents a detailed description of the SNAG

architecture and its implementation; In Section 2.5, we present our experimental

setup, testbed topology, and our data management framework. In Section 2.6, we
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present the traffic classification use case using the SNAG architecture; Section 2.7

presents the network monitoring use case, with monitoring views and forecasting

capabilities of SNAG; Section 2.8 presents the differentiated network services use

case and active network management for science data transfers using SNAG; In

Section 2.9, we provide some recommendations for building application-aware

architectures; Lastly, in Section 2.10, we conclude our work.

2.2 Motivations and Related Work

The GridFTP protocol [27, 28] has become a widely used network protocol for WAN

data movement in cluster/grid environments. Data-intensive science workflows

rely on distributed high-throughput computing systems for experimentation and

analysis tasks. The CMS computing model [7] is employed by workflows such

as CMS or LIGO on the Open Science Grid (OSG) [29] for moving large scientific

datasets across different computing sites using the GridFTP protocol. The GridFTP

protocol overcomes the well-known limitations of transmission control protocol

(TCP) for use in R&E networks that are characterized by high latency and high

bandwidth. This approach, at the cost of fairness, maximizes throughput for

large-scale data movement. Further, GridFTP maximize data transfer throughput

by creating parallel TCP sessions for each connection. At HCC, both CMS and

LIGO experiments rely on the GridFTP protocol for WAN data movement.

The GridFTP protocol breaks TCP fairness by focusing on end-to-end data trans-

fer throughput maximization by creating parallel TCP sessions for each established

connection. Due to this approach, the use of traditional network management and

traffic prioritization techniques with GridFTP are becoming increasingly limited.

As an example, an operator may be required to assign different traffic priorities to
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users of different workflow memberships within the same experiment. Therefore,

the network operator, in order to apply appropriate actions, must be provided

with an efficient and suitable policy-based mechanism to accurately differentiate

flows based on user, experiment, and workflow membership information. During

connection establishment, as GridFTP relies on the use of an encrypted control

channel, traditional techniques for traffic classification that employ packet inspec-

tion are ineffective as packet sniffing does not help the network classify flows. The

inability to obtain accurate traffic classification information means that prioritizing

flows based on either workflow membership, or based on users within a workflow

is not possible. As an example, a low-priority user may initiate thousands of

TCP streams in comparison to a high-priority user. Different experiments utilize

the same network source and destination addresses, preventing network-based

segmentation or prioritization of traffic. Alternately, within an organization, there

is a need to differentiate high-priority transfers versus test transfers. Application-

awareness (see Section 2.3), through application and network-layer collaboration,

is essential to obtain accurate information about current and ongoing transfers.

By using application metadata to identify flows, we can overcome the above men-

tioned limitations including the ones arising from the encrypted nature of the

traffic. Although numerous works propose the use of overlay networks, separate

session adaptation layers for the network control plane, and network middleboxes

for end-to-end data transfers, the use of application-aware architectures resulting

in application- and network-layer collaboration is limited. In the following sections,

we provide a brief overview of works that share some common aspects with our

application-aware networking approach.
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Figure 2.1: Stateful packet processing vs. application-aware approaches.

2.2.1 Network Management for Data-Intensive Science Transfers

An early effort to create an infrastructure layer based on session adaptation layer

was proposed in Phoebus [30, 31]. It relied on the strategic placement of “Phoebus

Gateways” (PGs) to dynamically allocate network resources using segment-specific

transport protocol adaptations. The traffic between end-points would then be

rerouted to the PGs for segment specific optimizations. OSCARS [26] proposed the

use of an overlay network architecture for enabling high-throughput, coordinated

data transfers over a WAN by leveraging the PGs. While Phoebus provides

the routing infrastructure for optimal path selections, OSCARS allows for high-

bandwidth network segment provisioning. Other approaches such as [32] and
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[33] overcome the limitations of typical scientific workflow communication tasks

requiring file transfers by relying on data locality in cloud storage services. Works

such as [34, 35] explore the application of differentiated scheduling and network

parallelism to achieve high WAN data transfer performance over lossless dedicated

resource provisioning systems such as ESnet and Internet2. The authors in [34]

propose the use of multiple paths on the WAN for the same application transfer

session. Using a bi-objective file transfer scheduling approach to reduce latencies,

they show that resource reservations are not necessary to meet the requirements

of response-critical WAN applications.

2.2.2 SDN-enabled Network Management and Monitoring

The eXtensible Session Protocol (XSP) [36] proposed a flexible protocol architecture

using the notion of a “session” to manage network states and provide application

services. The “session” manages data contexts, forwarding rules, state information,

connection lifetimes, or any other application interaction information. Applications

use this information to signal the network and change its configuration to suit

application needs. An XSP daemon (XSPd) containing a number of protocol specific

backends such as OSCARS [26], Terapaths [37, 38], OpenFlow [25] etc., allows the

application to signal the underlying provisioning service and receive feedback.

However, unlike our proposed solution, XSP provides limited application-layer

information and is loosely integrated with the network-layer. Other solutions have

been proposed to create both active and passive network monitoring systems using

SDN/OpenFlow including OpenTM [39], OpenNetMon [40], and OFMon [41].

These approaches have the advantage of maintaining simplicity in the network

core. However, their ability to accurately classify/monitor traffic at scale with high

volume transfers is untested.
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The majority of the WAN transfers at HCC do not use resource reservations, as

bottlenecks in the campus network are created primarily from resource sharing

across different workflows. Instead, we focus on site-level improvements and

intelligent decision making at the network edge to enhance transfer performance.

Unlike the network management architectures discussed in Section 2.2, our work

on SNAG focuses on accurate classification of flows at both the site-level (i.e.

campus network) and the experiment-level. We focus on optimizing data transfers

for users within a project membership and also between experiments. These

optimizations can, however, be combined with any of the above mentioned WAN

transfer strategies to further enhance end-to-end data movement. By focusing

on site-level (i.e. campus network) improvements rather than WAN performance

improvements, SNAG provides maximum flexibility to the site operator to pri-

oritize traffic and network resources for each experiment. By bridging the gap

between application-layer information and the corresponding network-layer flows,

our work integrates GridFTP with SDN to provide policy-based mechanisms for

network traffic management. SNAG focuses on ensuring accurate traffic classifica-

tion and network flow management at a single site. It does not require changes

to the the entire network but only changes at the site-level. Existing solutions do

not provide fine-grained controls at the end-points to prioritize specific flows but

focus solely on large-scale end-to-end data transfer throughput improvements.

These approaches improve the end-to-end GridFTP transfer performance through

multi-path bulk data movement by employing XSP, GridFTP striping and data-path

parallelism. Different from these approaches, SNAG focuses on GridFTP flow

classification, network monitoring and differentiated network services through

active network management at the site-level. This allows for optimizations in

resource allocation, site-specific policy enforcement, resource-usage accounting
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and traffic prioritization.

2.3 Application-Aware SDN

Applications designed for data-intensive science interact with massive amounts

of data and place varying demands on the underlying network infrastructure.

Applications also exhibit diverse characteristics that impact the resource availability,

quality of service (QoS), latency and network security. Although networks can use

application-layer metadata to understand an application’s resource requirements

and make intelligent decisions, such exchange is often limited or non-existent.

Application-awareness is the exchange of application-layer metadata with

the network, resulting in application- and network-layer collaboration. Thus,

application-awareness can provide intelligence for network-layer decision-making.

Through application-awareness, a network can optimize its functionality by obtain-

ing real-time information about the applications that connect to it. This approach is

different from logging application-layer information for use with monitoring and

analysis purposes in a number of ways. Firstly, application-awareness provides

real-time feedback about resource requirements and application/connection states.

Through application-awareness, a network-layer entity can securely interact with

an application process to adapt to its requirements. Secondly, log systems (i.e.

events or transactions) are built with the intention of providing an audit trail for

future analysis, and are therefore designed to record events of interest on occur-

rence. However, unlike logging, the application-aware approach exposes APIs to

securely communicate all application-layer metadata to optimize network-layer

functionality. Lastly, application-awareness can be employed to securely exchange

application metadata with a network-layer controller even if the application uses
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Figure 2.2: SNAG architecture consisting of the GridFTP, SNAG, and monitoring
components.

an encrypted transport-layer connection between endpoints. Therefore, in order to

obtain application-metadata for decision making, the network-layer need not resort

to external stateful packet processing techniques like deep packet inspection (DPI).

We note that the application-awareness approach is distinct from network-aware

applications, which involve application-specific network topology optimizations.

In Figure 2.1, we present an example of stateful packet processing and how it

differs fundamentally from application-aware approaches. Figure 2.1a shows the

process of extracting application-layer metadata using stateful packet processing.

The client first establishes a connection with the application server(s) and initiates a

data transfer. A stateful packet processing system such as a deep packet inspection

(DPI) unit is responsible for inspecting packet headers from the underlying traffic

and infer application metadata parameters. This information is communicated

to an SDN controller that uses the application-layer metadata in decision making

and corresponding rule/policy enforcement in the data plane. However, when the
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control/data channel communication between the client and application server is

encrypted end-to-end, DPI or other stateful packet processing systems are severely

challenged in their ability to extract application-layer information. This limitation

is further compounded by the large volumes of data transfers that are typical of

data-intensive science.

An application-aware approach is shown in Figure 2.1b. In contrast to stateful

packet processing, application-aware architectures do not rely on external packet

processors to obtain application metadata. Instead, when a client establishes a

connection with the application servers, the application servers securely communi-

cate the connection parameters and associated application metadata directly to the

SDN controller through a secure channel. Thus, our approach provides a secure

exchange of accurate application metadata with the network layer to enhance

network management decisions. Further, as our approach is unencumbered by

stateful packet processing units, they are highly scalable and suitable for data-

intensive applications. Next, we present the SNAG architecture and its integration

with the GridFTP application servers.

2.4 SNAG Architecture

GridFTP transfers at HCC are characterized by high data transfer rates and con-

sume significant network resources. To overcome the fairness limitations of TCP,

each GridFTP connection instantiates multiple TCP streams, and in practice, it is

common for each connection to set up 10 or more streams frequently. We also note

that each stream can interact with a different storage system during a data transfer

operation. At HCC, for a given use-case, we have also observed over 10,000 parallel

TCP streams for data transfer. As a data transfer at HCC depends on both the
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successful authentication of users and availability of data at the destination storage

servers, managing users’ network resources while ensuring availability has been

historically problematic. Both data availability information at the destination stor-

age servers and user authentication information are application-layer information.

In this context, typical network QoS techniques that rely on Layer-2 information are

ineffective as both low- and high-priority data transfers may use the same source

and destination endpoints. In our work, we extend the Globus GridFTP server

to integrate with an ONOS [42] SDN controller. This approach ensures that the

application-layer information is made available to the SDN controller for making

network-layer decisions and also to provide differentiated network services. Thus

using SNAG, the SDN controller obtains all necessary application metadata for

network-layer decision-making including connection strings, user/file information,

storage directories, etc. for all ongoing data transfers. Our proposed solution

integrates the ONOS SDN controller framework (using the north-bound API) with

an extended GridFTP application server module designed to obtain application

metadata for network management tasks. In this section, we describe our imple-

mentation architecture and how the extended GridFTP application servers and the

ONOS SDN controllers interact with SNAG to achieve application-awareness.

2.4.1 Implementation

SNAG integrates the GridFTP application servers with network-layer SDN control

using application-awareness. Our SNAG architecture is tested on the ONOS

[42] Magpie release (1.12.0). ONOS is an open-source community SDN software

framework which provides a programmatic control plane. Next, we share our

experiences with the deployment of SNAG at HCC and how application-awareness

can be used for monitoring and managing data transfers securely.
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SNAG enables the mapping of application-layer metadata (GridFTP connection

information) about network flows to the ONOS SDN controller using application-

awareness. This mapping can be used to not only monitor flows from different

user/workflows, but also to provide QoS and differentiated services at a fine-

grained level. Figure 2.2 shows the interactions between the three main components

of SNAG, namely:

1. GridFTP application servers, the Globus eXtensible Input Output (XIO)

Module, and the Hadoop Distributed File System (GridFTP-HDFS) plugin.

2. SNAG system with the ONOS SDN controller and two SDN applications

namely: i) ONOS GridFTP application, and ii) ONOS SNAG application.

3. An integrated monitoring system based on the Elastic stack [43], with Elastic-

search as a data store and Kibana for visualization.

At HCC, we deploy Hadoop Distributed File System (HDFS) [44] as the GridFTP

servers’ storage layer as this file system has fault-tolerance built-in natively. The

GridFTP-HDFS plugin is used by the GridFTP application servers to interact with

the HDFS storage infrastructure. As the plugin can access the file system layer,

it can retrieve the GridFTP application metadata associated with ongoing data

transfers. The Globus eXtensible Input Output (XIO) module exposes RESTful APIs

to securely communicate the GridFTP application metadata to the SDN controller.

The SDN controller, through a separate SDN-side application (called the ONOS

GridFTP application), can use the APIs to securely query the GridFTP servers about

new and ongoing data transfers. The XIO module also allows us to extend the

functionality of the GridFTP application servers easily. Using the APIs, the ONOS

GridFTP application retrieves various connection parameters including: i) GridFTP
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client/server connection strings (src/dst IPs and port-pairs); ii) User information

and associated workflow/experiment memberships; iii) Filenames; iv) Transfer

direction (upstream or downstream); v) Transfer event information corresponding

to one of STARTUP, UPDATE and SHUTDOWN; and vi) Connection timestamps.

This information corresponds to a nonuple (i.e. 9-tuple) and is used in traffic

classification, monitoring/forecasting, and for active network management. The

Globus XIO callout module initiates a RESTful API call for every transfer and sends

the above information to the ONOS GridFTP application. The ONOS GridFTP

application interfaces with the SNAG application (SDN-side) to preprocess the

nonuple. SNAG then coordinates both passive network monitoring and active

network management tasks. Thus, SNAG can be used to manage GridFTP transfers

by configuring the appropriate flow rules through ONOS. The SNAG RESTful

APIs are described below:

• ONOS GridFTP application includes a set of APIs to retrieve the nonuple

information. The APIs provided are GET, POST, and DELETE.

• ONOS SNAG application for connection information preprocessing and flow

management tasks. The APIs provided are GET, POST, PUT, and DELETE.

These APIs are used by the SDN-based network management system differenti-

ate between GridFTP and non-GridFTP flows using application-layer information.

Further, flow-specific treatment can be applied to either flows by applying the

appropriate forwarding/routing policies. Through this approach, we use SNAG

to analyze the flows and monitor network performance (see Section 2.7) and

provide differentiated network services based on pre-configured network policies

(see Section 2.8). SNAG can also be used in other scenarios, for example, based

on the application-level user/workflow membership information, some trusted
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user/workflow traffic can be routed to bypass stateful packet processing systems

(e.g. ScienceSDS [45]) such as firewalls, DPIs etc. Such an approach can reduce

the burden on the stateful packet processing systems while improving the data

transfer performance.

2.5 Experimental Setup and Testbed

In this section, we present our experimental setup, integration with the GridFTP

servers to enable application-awareness, the testbed network topology and its

capabilities, and our Elastic cluster data store.

2.5.1 Integration with GridFTP

DSI

Globus XIO XIO Callout

GridFTP Application

TCP

Shared Global Symbol

HDFS

Figure 2.3: XIO and GridFTP interaction.

The Globus eXtensible Input Output (XIO) [46] library provides a single user

API for all Grid IO protocols with the Globus Toolkit [47]. The XIO is a pluggable

module with open/close/read/write API operations. SNAG uses an XIO Callout

(see Section 2.4.1) to interface directly with the HDFS [44] storage layers using the

GridFTP-HDFS plugin. The Globus XIO is an efficient and highly optimized IO

library that is used by SNAG to create a scalable interface for retrieving GridFTP

application metadata. The XIO module and its interaction with the GridFTP

servers is shown in Figure 2.3.
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2.5.2 Network Testbed Topology

The Holland Computing Center (HCC) at the University of Nebraska-Lincoln is a

U.S. CMS Tier-2 site. HCC frequently handles high-throughput and high-priority

data transfers from the Compact Muon Solenoid experiment to Fermilab. It also

handles low-priority data transfers that are opportunistic in nature to the same

destination. HCC currently manages over 3 petabytes of data from the CMS

experiment and over 40 terabytes data from the LIGo experiment. Data transfers at

HCC widely use the GridFTP protocol for bulk batch transfer jobs while interactive

jobs are transferred over the XROOTD [10] file transfer protocol. Our SNAG

architecture effectively combines several essential components such as:

• An ONOS SDN controller for programmable network management and

traffic forwarding/routing tasks.

• An ONOS SNAG application for connection information preprocessing and

flow differentiation/management tasks.

• GridFTP application servers interacting with the HDFS storage layers using

the GridFTP-HDFS plugin.

• An XIO Callout developed for both retrieving the GridFTP application meta-

data securely and for communicating the metadata to the ONOS GridFTP

application.

• 100 Gbps WAN connectivity linking HCC to the Internet2 infrastructure.

A Brocade MLXe IP/MPLS router placed at the data center border connects to

the WAN over a 100 Gbps link as shown in Figure 2.4. Within the HCC network, a

40 GbE Dell S6000 switch serves the CMS cluster network core. This switch also
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hosts the production GridFTP and XROOTD servers as shown in Figure 2.4. On

the same network, a test network is also created which consists of a GridFTP server

removed from the production pool along with an OpenFlow enabled Edge-Core

AS4600-54T switch.

Project Testbed

Production  Network

100Gb

Production
GridFTP Servers

Testbed
GridFTP Servers

Dell S6000

Edge-Core
AS4600-54T

ONOS Controller

Brocade MLXe-8
Border Router

WAN10Gb 8x 10Gb

10
G

b

10Gb

Figure 2.4: GridFTP and SDN testbed network topology with external (WAN)
connectivity.

2.5.3 Elastic Cluster Data Store

The application-aware information obtained using SNAG is sent to an Elastic

stack [43] cluster for storage, monitoring and analysis. We use Elasticsearch for

monitoring data indexing, processing and analysis. Real-time monitoring views

are created using the Kibana visualization tool built into the Elastic stack. Our

Elastic cluster is composed of 11 nodes and also serves as our monitoring system.

Our Elastic stack cluster configuration is as follows:

• 3×Dell SC1435, 16GB RAM, 250GB HDDs for the master nodes.

• 3×Sun SunFire X2200, 32GB RAM, 240GB SSDs for hot data or ingest nodes.

• 5×Sun SunFire X2200, 32GB RAM, 2TB HDDs for warm data nodes.
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We note that 1 Gb Ethernet connections are used to connect all of the above nodes.

All application-layer metadata is sent to the Elastic cluster using a syslog style

file. This file feeds a filebeat agent (a lightweight data shipper for the Elastic stack)

which in turn feeds the logstash system, a server-side data ingestion pipeline on

the Elastic cluster.
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Figure 2.6: GridFTP connection by server locality and transfer direction (STARTUP
events).

2.6 Use Case 1: Traffic Classification using SNAG

The need for accurate traffic classification at HCC arises from the necessity for

monitoring/managing both encrypted and unencrypted traffic flows. GridFTP

transfers use an encrypted control channel during the connection setup stage and

use multiple randomly selected TCP channels for data movement. Due to the

encrypted nature of the GridFTP control channel, traditional techniques like deep

packet inspection (DPI) units cannot be employed to classify traffic. Apart from

GridFTP transfers, other encrypted activity at HCC includes ssh-logins. Without
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accurate and reliable traffic flow classification, an undue burden is placed on the packet

processing middleboxes such as DPI units, firewalls and intrusion detection systems

(IDS) due to the large amounts of data transferred. To alleviate this problem,

we propose an application-aware SDN approach to traffic classification using

SNAG. With the GridFTP application servers communicating application-layer

metadata to the network-layer SDN controller in a secure and seamless fashion,

accurate and reliable GridFTP traffic classification is possible. Further, accurate

flow classification information can be employed to provide service differentiation

and to actively manage the large-scale GridFTP flows from other network traffic as

discussed in Section 2.8.

2.6.1 Deployment

At HCC, experiments such as CMS or LIGO rely heavily on high-throughput

computing and both projects utilize GridFTP for WAN file transfers. In order to

accurately classify GridFTP transfers from both the CMS and the LIGO projects, we

deploy a production SDN environment on the project testbed as shown in Figure

1. Our architecture accurately classifies traffic from both CMS and LIGO projects.

The traffic classification system was deployed to work with thirteen (13) GridFTP

servers. Through SNAG, real-time traffic classification information of both CMS and

LIGO projects is available to both the SDN controller and the monitoring system.

Our approach not only provides fine-grained traffic classification information of

project users, but also provides useful application-layer metadata through a secure

RESTful API.

Our system classifies traffic by project association and user roles. Traffic flows

from six different user types are identified by SNAG namely:
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1. CMS PhEDEx – Represents the production CMS user data transfers initiated

by the PhEDEx [48] data placement system. These transfers are associated

with the movement of large physics datasets including “.root” files between

sites.

2. USCMSPool – Represents data transfers associated with users’ jobs, typically

data used during an individual researcher’s workflow. These transfers

include both experimental data and the corresponding output logs.

3. CMSProd – These transfers are similar to CMS PhEDEx, however, it also

include project-level information of CMS production workflows. Thus, these

transfers represent a specific project’s workflow rather than that of an indi-

vidual researcher.

4. LCG Admin – Represent transfers associated with SAM (Site Availability

Monitoring). They are small transfers designed to test the connectivity

between different sites.

5. LIGO – These transfers represent LIGO transfers. LIGO transfer are generally

opportunistic in nature and they share the HCC’s networking resources at

UNL.

6. Other Users – Apart from the user roles/types listed above, admin and test

transfers are also initiated locally by site administrators and HCC staff.

User types (1− 4) represent CMS user roles, and user type (6) is local site

transfers (both CMS and LIGO) by site administrators and HCC staff.
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2.6.2 Results and Discussion

Our SNAG architecture classifies traffic not only by user/workflow information,

but also based on the connection event type. Three types of connection events are

defined namely: a) STARTUP events representing new GridFTP connections, b)

UPDATE events to ensure that connections already established are kept alive, and

c) SHUTDOWN events representing connection terminations. Figure 2.5a presents

the total number of connection STARTUP events measured over a 6-month period

classified by user type. A total of 171.69 million connections were classified during

the measurement period of 6 months. This is based on the nonuple (i.e. 9-tuple)

information described in Section 2.4.1. Figure 2.6a shows the heatmap of the

GridFTP connection information classified based on the GridFTP server (S1 to S13)

fulfilling the request, measured over a 6-month period. We note that all connections

are load-balanced using a Linux Virtual Server (LVS) [49] load balancing system

and is therefore independent of the server pool infrastructure capabilities. The per-

server connection heatmap clearly shows that the load balancing system works as

intended for the GridFTP server connection pool. The heatmap provides valuable

information to the site operator about the instantaneous loads on each server in

the server pool. Novel load-balancing techniques can be developed to cater to

specific user/workflows types by exploiting the application-awareness information

obtained from our SNAG architecture. Figure 2.5b shows the GridFTP connection

distribution (only STARTUP events) classified by user type, and measured over a

6-month period. We see that USCMSPool users generate the bulk of the connections

from analysis transfers of end-user jobs. At HCC, we see that approximately 90%

of the connections established on a daily basis are generated by USCMSPool and

CMSProd users.
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Accurate and reliable traffic classification at the site-level provides valuable

insights to the site operators about network resource usage and accounting. Our

SNAG solution provides a fine-grained approach to traffic classification that is

not possible using traditional approaches. By relying on real-time application

metadata to ascertain flow information, we can develop novel and intelligent

traffic classification techniques that incorporate a wider spectrum of classification

parameters. Network administrators can use the traffic classification information

from SNAG to make resource allocation decisions and in optimizing network

services to improve transfer/security performance for end-users. This application-

aware traffic classification technique is also vital to developing new monitoring

views (Use Case 2), and in providing intelligence for active network management

(Use Case 3).

2.7 Use Case 2: Network Monitoring using SNAG

Distributed, large-scale transfers from experimental science workflows such as

CMS and LIGO at HCC rely on stable, secure and robust network infrastructure

for normal operation. At HCC, we have identified the need for a real-time net-

work monitoring system to understand end-user resource requirements, and to

ensure smooth operation through effective and efficient network resource utiliza-

tion. The SNAG architecture demonstrates an application-aware approach where

applications collaborate with the network-layer to create monitoring views that

cannot be realized using traditional network management approaches. SNAG

generates unique monitoring views from application-layer metadata which can be

used to understand user behavior. For example, a monitoring view created using

application-awareness can help us understand how an opportunistic user, such as
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LIGO, utilizes the shared networking resources. As distributed high-throughput

computing workflows become data-intensive and flow continuously between sites,

a careful accounting of resource usage is necessary for resource owners to be

comfortable with opportunistic sharing. Monitoring views based on classified

traffic as discussed in Section 2.6 can help us understand per-user or per-workflow

resource usage including bandwidth consumption, network activity, connection

trends etc. In the following sections, we present monitoring views, trend anal-

ysis and forecasting/estimation of GridFTP transfers by building on the traffic

classification system presented in the previous section.
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(b) Download Trends.
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Figure 2.7: Bandwidth Utilization and Trends.
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(a) CMSProd bandwidth consumption.
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(b) LCGAdmin bandwidth consumption.
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(c) Consumption trends - CMSProd.

0 3 6 9 12 15 18 21 24
0.0

0.1

0.2

0.3

0.4

0.5

0.6

LC
G

Ad
m

in
 U

sa
ge

 T
re

nd
s 

(M
bp

s)

Time (Hours)

(d) Consumption trends - LCGAdmin.

Figure 2.8: Upload bandwidth consumption by user type measured over 24 hours.

2.7.1 Monitoring Views and Trend Analysis

The SNAG architecture makes it possible to monitor the network in real-time,

thus providing site-level monitoring views. Using the application-awareness

information provided by SNAG, we can monitor in real-time, the number of

upload/download connections initiated, per-user or per-experiment connection

information, bandwidth consumption by different users/workflows by direction

(upload/download), connection trends classified by user/workflow type and

forecasting views for end-user connections. We employ simple moving average

(SMA) to analyze the trends in bandwidth consumption and the trends in the



43

0 3 6 9 12 15 18 21 24
0

2

4

6

8

10

12

14
C

M
SP

ro
d 

Ba
nd

w
id

th
 U

sa
ge

 (G
bp

s)

Time (Hours)

(a) CMSProd bandwidth consumption.
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(b) CMSPool bandwidth consumption.
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(c) Consumption trends - CMSProd.
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(d) Consumption trends - CMSPool.

Figure 2.9: Download bandwidth consumption by user type measured over 24

hours.

number of connections initiated by user/workflow type. We define the simple

moving average m̄SMA as follows:

m̄SMA =
x̄M + x̄M−1 + · · ·+ x̄M−(n−1)

n
=

1
n

n−1

∑
i=0

x̄M−i (2.1)

where, n is the sample size and M is the position of the current data point. We use

the simple moving average to analyze bandwidth and connection trends presented

in Section 2.7.3.
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(a) Trends - CMSPool.
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(b) Trends - CMSProd.
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(c) Trends - LCGAdmin.
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(d) Trends - LIGO.

Figure 2.10: Connection trends by user type.
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Figure 2.11: Prediction and Forecasting GridFTP connection STARTUPs.
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2.7.2 Forecasting and Prediction

Adaptive models based on exponential smoothing can be applied in forecasting and

prediction of data points in a time series that is optionally characterized by trends,

seasonality, and periodic/random fluctuations. Time series data components can

be combined in an additive, multiplicative or a mixed fashion as noted in [50].

The Holt-Winters model [51, 52] (or triple exponential smoothing) can be applied

to forecasting time series data with seasonal components. Single exponential

smoothing (equation 2.2), also referred to as Brown’s model [53], can be used

to obtain a single prediction data point x̂t. The term α ∈ (0, 1) represents the

smoothing coefficient and its choice dictates the weight assigned to the most recent

observed data point (i.e. xt).

x̂t = α · xt + (1− α) · x̂t−1 (2.2)

Therefore, α represent a memory decay rate, with higher smoothing coefficients

weighing the most recent observation heavily and placing little emphasis on

historical events. We define the level ` to represent a single prediction, and

the trend bt is the slope of the series for two adjacent data points. Therefore,

bt = xt − xt−1. Double exponential smoothing is then equation 2.2 applied to both

` and bt and is given by:

`t = αxt + (1− α)(`t−1 + bt−1) (2.3)

bt = β(`t − `t−1) + (1− β)bt−1 (2.4)

x̂t+1 = `t + bt (2.5)
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The term β ∈ (0, 1) is the trend coefficient. By applying exponential smoothing

to the seasonal components in addition to ` and bt as discussed above, t + p

prediction data points can be obtained. The Holt-Winters model in additive form

is as described below:

`t = α(xt − st−L) + (1− α)(`t−1 + bt−1) (2.6)

bt = β(`t − `t−1) + (1− β)bt−1 (2.7)

st = γ(xt − `t) + (1− γ)st−L (2.8)

x̂t+p = `t + pbt + st−L+1+(p−1)modL (2.9)

The term γ is the seasonal change smoothing coefficient. Further, we note that the

initial value of the initial trend b0 is obtained as:

b0 =
1
L

(
xL+1 − x1

L
+

xL+2 − x2

L
+ ... +

xL+L − xL

L

)
(2.10)

We use the Holt-Winters model to forecast traffic behavior and to estimate

short-term [54] resource requirements.

2.7.3 Results and Discussion

Figure 2.6b shows the total number of upload/download connections for all con-

nection event types (i.e. STARTUP, UPDATE and SHUTDOWN). The results

presented in this section represents monitoring data measured over a 24 hour

period. We further note that each data point represents an aggregate measured

over a 10 second interval. However, it is also possible to measure the number of

connections in real-time. Next, we present the total upload and download band-
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width consumption (in Gbps) of all GridFTP users at HCC. This is an accurate and

real-time bandwidth measurement computed using the file transfer information

provided by the SNAG application-aware module and is representative of the total

bandwidth utilization of all GridFTP transfers at HCC. Figures 2.7a and 2.7c show

the total download and upload bandwidth consumption, and the Figures 2.7b and

2.7d show the trends in download and upload bandwidth consumption computed

using a 15 minute simple moving average (SMA).

Total upload and download bandwidth consumption and their associated

trends classified by user/workflow type is shown in Figures 2.8 and 2.9 respectively.

Figures 2.8a and 2.8b presents upload bandwidth consumption for CMSProd and

LCGAdmin users respectively. The corresponding users’ bandwidth consumption

trends are shown in Figures 2.8c and 2.8d respectively. Similar results for download

bandwidth consumption are shown in Figure 2.9. We note that LCGAdmin user

transfers represent small test transfer uploads and with the exception of CMSProd

and USCMSPool users’ transfers, no other transfers were initiated during the

measurement period. In Figure 2.10, we present the connection trends classified

by user/workflow type. Trends in the total number of connections established for

individual users are presented in Figures 2.10a through 2.10d respectively. Lastly,

in Figure 2.11, we present GridFTP connection forecasting and prediction using

the Holt-Winters model presented in Section 2.7.2. The correlogram presented in

the Figure 2.11a shows the autocorrelation properties of the GridFTP connection

time series with a lag of one hour, i.e. lag = 60 (minutes). The correlogram

shows strong positive autocorrelation properties. The shaded cone represents

the 95% confidence intervals, and also corroborate the high autocorrelation for

the time series. Figure 2.11b shows the forecast data over a 6 hour measurement

period. We set the smoothing, trend, and seasonal change smoothing coefficients
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to α = 0.7, β = 0.1 and γ = 0.9 respectively. We see that the prediction closely

models the actual measurement, and therefore, the Holt-Winters model can be

employed to obtain reasonable GridFTP connection forecasting information.

Globus XIO 

GridFTP-HDFS 

REST
Application-
awareness

Module

REST

Policy Engine

North-bound API 

Actions

OpenFlow

ONOS SDN Controller

Policy Framework 

Monitor

WAN

CMS 
Experiments

LIGO 
Experiments

GridFTP Server Pool 

Figure 2.12: Solution Architecture.

Thus, real-time network monitoring of GridFTP users is possible through SNAG.

By providing real-time monitoring and trends information to the site-operator, we

can influence resource reservation and planning decisions. Further, automated

alerts can be set up to notify the network administrators on the occurrence of

specific events such as LIGO users initiating a large number of connections. We

also demonstrated the usefulness of application-aware information in resource

forecasting and prediction. We note that more sophisticated models for forecasting

and modeling time series data can be employed with SNAG to accurately forecast

end-user requirements. Accurate and reliable forecasting data can help network

operators set bounds on networking, compute and storage requirements.
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2.8 Use Case 3: Differentiated Network Services and Active Net-

work Management using SNAG

Network services differentiation [55] is essential at the site-level to enhance transfer

performance at the network edge. With both CMS and LIGO projects using the

same network infrastructure, the inability to classify and differentiate services

results in low-priority users of one workflow blocking/preempting the high pri-

ority users of the other. Without service differentiation, the network operator

cannot optimize users’ transfers within a workflow. Although each connection

can reserve resources, our solution instead relies on developing site-level improve-

ments to optimize data transfer performance. Our goal is to facilitate the network

operator to account for site-wide resources accurately. To further motivate the

problem, we provide two crucial drivers for the need for application-aware services

differentiation.

2.8.0.1 Application-aware traffic prioritization

GridFTP connections rely on the use of encrypted control channels and parallel

TCP streams (randomly chosen) for data movement. Application-awareness allows

an operator to manage both GridFTP and non-GridFTP flows. Traffic classification

using Layer-2 or Layer-3 approaches alone cannot serve to differentiate encrypted

traffic between the same endpoints. Consider two transfers between the same end-

points; a low-priority user can easily preempt a high-priority user by consuming

significant resources opportunistically. Application-awareness is a crucial driver

for such cases as application metadata can be easily exploited by an operator to

prioritize the appropriate data transfer.
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2.8.0.2 Policy-driven service differentiation

Network operators routinely face problems with resource usage accounting for

data-intensive science workflows like CMS and LIGO. This difficulty arises from

an inability to monitor each experiments’ traffic and map it to resource usage.

In the campus network, multiple stakeholders are responsible for the operation

and maintenance of its network infrastructure. Therefore, a policy-driven mech-

anism for managing and monitoring resources proves vital. Furthermore, such

policies can serve to regulate/meter resource usage and ensure the prioritization

of scheduled transfers over opportunistic transfers.

2.8.1 Differentiated Services Solution Approach

Application-awareness combined with SDN forms the basis of our solution for

policy-driven management of data-intensive science workflows. First, we begin

with a reliable and accurate classification of flows from different experiments. This

objective is accomplished through the exchange of application metadata between

the GridFTP application servers and the SDN controller. The SDN controller

creates and manages a repository of all ongoing transfers obtained from the

GridFTP servers. This information is used to make network-layer and data-plane

decisions. A policy framework is used by the network operator to define and

apply the appropriate policies to these transfers. Our framework consists of a

policy-engine and an associated policy specification language implemented as an

SDN application. The SDN controller uses the policy controls and translates them

to appropriate data plane decisions. Based on the defined policy, a set of actions

(that correspond to the policy strategy) are applied to the data flows.
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2.8.2 Policy Framework

Our policy framework contains a policy engine, a specification language and a

set of defined actions. The policy engine, implemented as an SDN application, is

responsible for managing user-defined policies. Our policy specification language

uses JavaScript Object Notation (JSON). The policy engine processes a set of actions

to affect flow treatment to appropriate transfers. Management of policies is enabled

using RESTful APIs. In the following, we briefly discuss each of these components:

2.8.2.1 Policy Engine

The policy engine comprises of a policy manager, an event handler, a parser, and a

policy repository. The policy manager is responsible for policy lifecycle management

(including those created using the RESTful APIs). After the parser validates each

policy, it is stored in the repository (both new and updates). The policy engine’s

event handler converts the policy specifications to corresponding OpenFlow rules

that are programmed to the switches using the south-bound APIs.

2.8.2.2 Specification Language

The policy specification uses JSON resources encapsulated in a REST POST to

interact with the policy engine in the framework. The specification language allows

us to define/modify the default flow treatment for an experiment. Each policy

specifies an action type and to which data transfers it is applicable. The policy

framework can apply actions to user transfers, workflows or experiments. Further,

each policy has a lifecycle defined by start- and end-times for policy enforcement.

Next, we describe actions and associated service differentiation strategies for data

transfers.
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2.8.2.3 Actions and Strategies

Actions along with predefined strategies are responsible for implementing the

desired flow treatment behaviors in the data-plane. A site operator can define

different QOS and traffic prioritization/management strategies, and specify the

appropriate strategy to be applied using the policy specification. Each strategy

is composed of two parts: definitions (e.g. queues to use, associated priorities,

max/min rate settings etc.) and a trigger that enforces the policy.

2.8.3 Differentiated Services Solution Architecture using SNAG

The solution architecture is as shown in Figure 2.12. The GridFTP server pool

oversees data transfers from both CMS and LIGO projects. The GridFTP server

uses the XIO callout module to send application metadata to the SNAG application

on the SDN controller. SNAG is responsible for providing information regarding

new and ongoing data transfers to the site operator. The site operator then uses the

transfer statistics to make the policy decisions that are enforced using the policy

framework built as an SDN application. The policy framework provides a RESTful

API for communication, and policy enforcement can either be performed manually

by the site operator or can be automated by the SDN controller.

2.8.4 Algorithm Design for Service Differentiation

Our algorithm focuses on providing a policy-based solution to network services

differentiation. We rely on two important principles namely: application-awareness

and policy strategy.

While application-awareness gives us valuable insights into the current state

of data transfers from various users/projects/experiments, policy strategy, on
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Algorithm 2.1 AA-DNS(p, target)

Require: Policy File (p), target
Output: Provisioned Network Flows

Initialization :
1: for all p ∈ P do
2: Generate p_id(p)
3: if (p 6∈ PolicyMap) then
4: Add (p, p_id(p)) to PolicyMap
5: else
6: Replace PolicyMap(p)
7: end if
8: end for

Policy Enforcement :
9: for all p ∈ PolicyMap do

10: if (p.expired 6= TRUE) then
11: CONFIGURE(queues ∈ p.strategy)
12: f lowrule = COMPOSE(p, target)
13: Ruleset← f lowrule
14: for all Switch s ∈ S do
15: APPLY Ruleset(s)
16: end for
17: end if
18: end for

the other hand, allows us to apply the right forwarding behaviors to the desired

flows. The AA_DNS(p, target) algorithm is as shown in Algorithm 1. The algorithm

initializes policy IDs for each policy and manages them in a PolicyMap. The policy

engine parses each policy and extracts the specified strategy (p.strategy). The policy

strategy contains information about QoS requirements, queue specifications and

priority definitions for the target traffic. This information is used to create the

appropriate flow rules by the SDN controller and applied to the corresponding

switches in the data plane to change the forwarding behaviors.
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Figure 2.13: Differentiated network services queuing performance.
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2.8.5 Implementation

Our SNAG differentiated services solution is used to manage and monitor data

transfers over the GridFTP protocol, providing differentiated network services.

The policy framework and the QoS/prioritization systems are implemented as an

ONOS application. SNAG provides application metadata that is not only used

to obtain real-time data transfer information but also allows for the creation of a

GridFTP transfer statistics repository. This repository provides useful information

that aids the site operator in designing/choosing the appropriate policy for service

differentiation.

We use the hierarchical token bucket (HTB) [56] for egress traffic shaping. HTB

is a egress queuing discipline implementation for Linux kernel packet scheduler

user space utilities. We limit our discussion to egress traffic shaping (using queues)

and do not use ingress rate limiting algorithms (that employ policing) to provide

differentiated services. Ingress rate limiting/policing does not use queues but

drops packets beyond a certain rate instead; this is problematic as some protocols

react severely to dropped packets. We present two strategies for implementing

differentiated network services for GridFTP transfers using egress traffic sharing

and queues.

2.8.5.1 Resource Isolated Queues (RIQ)

This strategy creates separate resource isolated queues for each project type based

on the SNAG classification information. We evaluate the transfer performance on

a 10 Gbps link. For example, we create two queues q1 and q2, with ingress traffic

shaped to 7 Gbps and 3 Gbps respectively (i.e. a 7:3 ratio). The two queues have

equal priority and have their priorities set to a value higher than the best-effort
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link. We evaluate this strategy by placing CMS traffic on q1 and LIGO traffic on q2.

We note that the queue capacity ratios can be adapted to the resource requirements

of the individual projects.

2.8.5.2 Resource Switched Queues (RSQ)

In this strategy, the traffic from a predefined project is automatically switched to

a sub-queue on arrival. The sub-queue limits the resources utilized by a given

project. For example, we create two queues, q1 and q2 with rates of 10 Gbps (main

queue) and 3 Gbps (sub-queue) respectively. The priority of q1 is greater than

that of q2, which is an important difference from the previous strategy. In this

approach, we utilize a single high priority 10 Gbps queue for all data transfers

except LIGO. LIGO transfers if initiated, are automatically switched to use q2. In the

following section, we discuss the performance of both strategies.

2.8.6 Results and Discussion

In Figure 2.13a, we show the bottleneck bandwidths for creating the 10 Gbps

queue when both egress traffic shaping and ingress rate limiting are used. It can

be seen that the performance of the ingress rate limiting varies with the burst

size. Thus, we focus only on egress traffic shaping for our evaluations. Figure

2.13b shows both the individual and aggregate bottleneck bandwidths for resource

isolated queuing (RIQ) strategy with a 7:3 ratio (i.e. q1=7 Gbps and q2=3 Gbps).

The performance of RIQ for 10 random transfers is shown in Figure 2.13c. It can

be seen that both queues exhibit linear correlation with a decrease in q2 traffic

resulting in a corresponding increase in q1 traffic as shown by the trend lines

(plotted with 95% confidence intervals). The standardized residual plot for RIQ

is shown in Figure 2.13d. The histogram plots of the residuals for both q1 and q2
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are also shown in the Figures 2.13e and 2.13f respectively. These results show that

the transfer datasets are symmetric and bi-modal with no outliers. The bi-modal

nature of the transfer dataset is also established from the normal probability plot

of residuals as shown in Figure 2.13g. Since both queues are set to use the same

priorities, they behave as two rate-limited best-effort queues that are independent

of each other. Figure 2.13h shows the performance of RSQ, where LIGO traffic is

switched to a lower priority queue on arrival. It can be seen that during the LIGO

transfers, the higher priority queue q1 shapes its traffic to accommodate LIGO

flows. Note that q2 uses only a portion (max 3 Gbps) of the larger 10 Gbps queue

i.e. q2 does not represent a separate queue from q1. Comparing the aggregate

throughputs of both strategies from Figures 2.13b and 2.13h, we see that strategy

2 provides an additional capacity improvement of 11.74%. This is because CMS

flows can achieve higher throughputs as fewer traffic shaping requirements free

more bandwidth.

Thus, SNAG can be used successfully to make intelligent decisions for active

network management. The use of application-layer metadata provides greater

flexibility in making network-layer decisions that are adaptive to end-user re-

quirements. Using application-awareness, we can provide differentiated network

services, network isolation, and improved resource utilization for network-layer

flows.

2.9 Recommendations for Building Application-aware Architec-

tures

Our application-aware architecture can be easily extended to obtain application-

layer metadata from other applications. Example application servers include web
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servers, file servers, storage servers and (high-performance) file-system layers,

cloud/grid management servers, and media streaming services among others.

Our exemplary architecture facilitates the exchange of application-layer metadata

with the network-layer securely using RESTful APIs over the HTTPS protocol.

However, our proposed approach is not limited to the use of RESTful APIs for

application- and network-layer communication. We can facilitate the exchange

application-layer metadata using other platform-independent mechanisms such as

remote procedure calls (e.g., gRPC), NETCONF/YANG, message queue protocols

(e.g., RabbitMQ, SOAP, etc.), and SDN controller-specific north-bound APIs.

Application-aware architectures are beneficial for both active and passive net-

work management. An operator can easily integrate application-aware decision-

making into network traffic classification, monitoring, trend analysis, and fore-

casting tasks. By employing a high-performance data store (e.g., an Elastic stack

cluster), advanced data analytics, real-time alerts, alarms, and auditing/report-

ing is possible. Integration with big-data analytics, business intelligence, and

enterprise reporting tools can provide critical inputs for policy/decision makers.

2.10 Conclusions and Future Work

We proposed SNAG, an application-aware SDN solution for at-scale GridFTP traffic

classification, monitoring, and management. SNAG demonstrates a cross-layer

(application- and network-layer) collaborative approach to create traffic classifi-

cation and monitoring views that are not achievable using traditional layering

approaches. We also demonstrate how to exploit application-layer metadata to

make intelligent network management decisions. At HCC, this is crucial in helping

us understand how opportunistic users from LIGO, utilize the shared network
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resources. As distributed high-throughput computing workflows become data-

intensive and flow continuously between sites, a careful accounting of resource

usage is necessary to ensure that resource owners are comfortable with opportunis-

tic sharing. Although SNAG has focused on GridFTP integration as it constitutes

the majority of the transfers at HCC, our approach is specific to GridFTP. HCC

performs an increasing amount of transfers through the XRootD and HTTP pro-

tocols. The implementation also called “XROOTD” [10], is pluggable and can be

integrated with SNAG.

We also present an application-aware SDN approach to network services dif-

ferentiation and active network management. Using this approach, we can apply

per-workflow policies at the site-level which was not previously possible. We

demonstrated an application-driven mechanism for creating workflow-specific

resource queues. Using application-aware network management principles, site

operators can optimize resource allocation and fine-tune network performance to

suit end-user application requirements. Further, our approach can benefit other net-

work management tasks including routing/forwarding, traffic analysis/redirection,

resource provisioning, and QoS.

Our future work will focus on creating adaptive strategies on-the-fly so that we

can automate policy enforcement for network management decisions. There are

paths for the SNAG project to grow: we would like to apply the SNAG application-

awareness approach to other applications and add a more significant percentage

of the transfer servers to the SNAG architecture. Transferring the first petabyte of

data through SNAG-managed network infrastructure will be an important internal

milestone.
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Chapter 3

Optimized Service Chain Mapping and Reduced Flow

Processing with Application-Awareness

Network Function Virtualization (NFV) brings a new set of challenges when

deploying virtualized services on commercial-off-the-shelf (COTS) hardware. Net-

work functions can be dynamically managed to provide the necessary services

on-demand and further, services can be chained together to form a larger compos-

ite. In this chapter, we address an important technical problem of mapping service

function chains (SFCs) across different data centers with the objective of reducing

the flow processing costs. The SFC mapping problem is critical to enhancing

the virtualized service networks’ performance, as it places high demands on the

performance of these service functions. We develop an integer linear programming

(ILP) formulation to optimally map service function chains to multiple data centers

while adhering to the data center’s capacity constraints. We propose a novel

application-aware flow reduction (AAFR) algorithm to simplify the SFC-ILP to

significantly reduce the number of flows processed by the SFCs. We perform a

thorough study of the SFC mapping problem for multiple data centers and evalu-

ate the performance of our proposed approach with respect to three parameters:

i) impact of number of SFCs and SFC length on flow processing cost, ii) capac-
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itated/uncapacitated flow processing cost gains, and iii) balancing flow-to-SFC

mappings across data centers. Our evaluations show that our proposed AAFR

algorithm reduces flow-processing costs by 70% for the capacitated-SFC mapping

case over the SFC-ILP. In addition, our uncapacitated AAFR (AAFR-U) algorithm

provides a further 4.1% cost-gain over its capacitated counterpart (AAFR-C).

3.1 Introduction

Recently, several evolutionary trends in networking such as software defined

networking (SDN) and network functions virtualization (NFV) have had a sig-

nificant impact on the next-generation of network architectures. SDN introduces

the network control and data plane separation and allows dynamic and program-

matic control of the network via open interfaces. NFV, on the other hand, utilizes

traditional server virtualization techniques to provide an architecture where net-

work functions run over commercial-off-the-shelf (COTS) hardware rather than

dedicated boxes.

In traditional networks, a set of network middleboxes (e.g. firewalls, NATs,

IDSs, etc.) process traffic flows, with each flow traversing the middleboxes in

a specific order. Service function chaining (SFC) represents a way of stitching

together diverse network/service functions (i.e. middleboxes) to form a composite

service. In order to implement SFC, network operators have to steer the traffic

flows to a set of hardware middleboxes in the local network. This process is

expensive to deploy and maintain [57]. SFC with virtualized network/service

functions provides greater flexibility in deploying services by outsourcing the

middlebox functionality to the cloud. Processing traffic on virtualized service

functions and SFCs place additional demands on the underlying cloud and network
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infrastructure. Traffic steering through the virtual infrastructure must guarantee

performance and quality of service. Since virtualization is an added layer of

abstraction, flows can incur additional delays. Unlike traditional middleboxes that

are optimized to perform specific tasks, virtualized services rely on commodity

hardware for flow processing. Additional latencies are introduced by outsourcing

network/service functions to the cloud as traffic flows will have to traverse the

WAN for processing. This is a serious concern for applications that are delay-

constrained and rely on fast/transparent processing by network functions during

data transfers.

Despite NFV presenting many new opportunities, challenges exist in NFV

placement and SFC mapping across data centers. Placing network/service func-

tions far from the user results in additional delays. Security services provided

via NFV infrastructure for large networks are expected to support context-aware

and low-latency applications in a highly efficient manner. The introduction of

security services at the network edge, while reducing the response time, may

impact core-network utilization. To address the above challenges, we study the

SFC mapping and placement problem across multiple data centers in this work.

We focus on solving the SFC mapping problem to provide security services to

both interactive and large-volume data transfers. We model our solution to suit

an existing 100G production network topology, which is an important difference

compared to previous works. We also ensure that the model is general enough to

be applicable to other multi-data center network scenarios.

The main contributions of this chapter are the following: i) We formulate an

integer linear programming (ILP) problem (SFC-ILP) for optimized SFC mapping

in a multi-data center topology and propose an application-aware flow reduction

(AAFR) algorithm to reduce the NFV flow processing workloads. Traffic and
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resource characteristics of a testbed network consisting of four data centers are

employed in the proposed ILP model, ii) We compare the results of AAFR with the

SFC-ILP formulations for a production U.S. CMS Tier-2 network, iii) We conduct

extensive performance evaluations of the proposed AAFR algorithm and show flow

processing workload savings of 47%− 70% can be achieved for the capacitated-

SFC mapping problem, and iv) We present a quantitative comparison of the

capacitated- and uncapacitated-SFC mapping problems and show that SFCs with

unlimited processing capacities do not result in significant cost benefits. Finally, we

demonstrate the AAFR algorithm’s effectiveness in balancing flow-to-VNF (virtual

network function) mappings to avoid SFC-loading problems.

The rest of this chapter is organized as follows: Section 3.2 provides an overview

of our virtualized services model and describes the network scenario targeted

by our solution; Section 3.3 presents an ILP formulation of the VNF placement

problem; Section 3.4 extends the VNF placement problem to formulate the SFC

mapping optimization problem; Section 3.5 gives an overview of application-

awareness and presents our proposed application-aware flow reduction (AAFR)

algorithm; Section 3.6 describes our experimental setup, testbed data center net-

work setup, and performance results; some related works are presented in Section

3.7; lastly in Section 3.8, we conclude our work.

3.2 Virtualized Services Model and Network Scenario

3.2.1 Virtualized Services Model

Network functions in general and security services in particular are modeled as

virtual network functions (VNFs). We denote the set of VNFs by V. Each VNF

v ∈ V is hosted on a physical node n ∈ N and consumes a fraction of the node’s
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capacity Cn. Further, a VNF v has a constrained traffic processing capacity as

defined by Cv. Multiple VNFs are combined together (i.e. “chained”) in a defined

order to form a service function chain (SFC) s ∈ S. Each SFC is mapped to a node

n ∈ N in the physical network substrate. Thus, all ingress traffic flows f ∈ F are

processed by a set of SFCs S in the virtual network substrate to provide network

services to these flows.

3.2.2 Network Scenario

The physical network substrate is composed of two data centers, connected to a

common border router. We model the physical network substrate as a directed

graph GP(N, E) composed of a set of physical nodes and links. While the nodes

host the VNFs that are then networked to form a service function chain, the virtual

network traffic is carried over the links in the physical network substrate. The

physical nodes and links are hosted on commercial off-the-shelf (COTS) hardware

and have processing and transfer capacity constraints. The physical network

substrate forms the NFV infrastructure (NFVI). The virtual network substrate

is also modeled as a directed graph GV(V, Ev) and consists of VNFs and their

associated links.

The network scenario used by our optimization model is as shown in Figure

3.1. The proposed work models the service function chain mapping to data centers

across multiple campus networks. The SFCs are set up only in the data centers 1

and 2. Each data center generates two types of traffic: i) Traffic from experimental

science projects such as CMS [7] and LIGO [24], and ii) Commodity Internet traffic

from users in the campus network. Data centers DC1 and DC2 are managed

by the same network and connect to the wide area network (WAN) through the

Brocade MLXe border router as shown in Figure 3.1. This combined network hosts
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Figure 3.1: Network Scenario.

the NFV infrastructure (NFVI) and provides the service functions for processing

both experimental science and commodity Internet traffic. Two other data centers

connect to this network over the Internet2 backbone.

3.3 VNF Placement Problem

In this section, we present a formulation of the VNF placement problem. This

formulation forms the basis for our SFC mapping problem discussed in Section

3.4. The VNF placement problem is defined as follows:

Definition 3.1: Given a physical network substrate graph GP(N, E), find the optimal

placement of VNFs for maximizing admission of flows f ∈ F.

We present a mathematical model for the VNF placement problem below. The

model determines the optimal VNF placement for maximizing the number of flows

admitted into the virtual network for processing. Each flow f is associated with

forwarding policy pol f , and is admitted for VNF processing only if a flow-to-VNF
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mapping is possible. Depending on where a VNF is placed in the flow’s path

as dictated by a forwarding policy, resource usage, network utilization and flow

processing latencies will be impacted. Thus, VNF placement is an important

problem and presents many challenges including VNF deployment in geographi-

cally separated data centers, flow routing consistency to satisfy forwarding policy

requirements and efficient flow-to-VNF mapping to minimize resource usage.

3.3.1 Problem Formulation: VNF-LP

3.3.1.1 Decision Variables

We define the following binary decision variables for the VNF placement problem.

α f =


1, if flow f is admitted for processing.

0, otherwise.
(3.1)

βu
v,n =


1, if VNF instance u of v placed on a

physical node n ∈ N.

0, otherwise.

(3.2)

γ
eq, f
e =


1, if flow f to eq ∈ Eq is routed through

a physical link e ∈ E.

0, otherwise.

(3.3)

δ
u, f
v,n =


1, if flow f is assigned to instance u of v

placed on a physical node n ∈ N.

0, otherwise.

(3.4)
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Table 3.1: Notations used in the LP Formulation.

Parameters Description
GP(N, E) Graph representing the physical network substrate.
GV(V, Ev) Graph representing the virtual network substrate.
GS(Vs, Es

v) The SFC graph with nodes Vs on the chain and Es
v virtual links

between them.
N The set of nodes in the physical network substrate.
E The set of links in the physical network substrate.
V The set of VNFs. Each VNF v ∈ V denotes a particular type of

VNF (e.g. DPI, Firewall etc.).
Ev The set of links in the virtual network substrate.
Vs The set of VNFs on the SFC.
Es

v The set of virtual links on the SFC.
Vs

end The set of endpoint nodes (ingress and egress) of the SFC i.e.
{v(in), v(out)}.

Vs
f n The set of VNFs on the SFC excluding Vs

end.
F Denotes the set of ingress traffic flows, with each flow f ∈ F.
S Denotes the set of service chains.
Cn The resource capacity of the physical node n.
Cv Processing capacity a VNF v.
Bi,j The bandwidth of the physical link (i, j) ∈ E.
Bv The bandwidth capacity of a virtual link ev ∈ Ev.
Bs The bandwidth capacity of the SFC s ∈ S.
Ku The maximum allowed VNF instances u of type v ∈ V.
Kv The maximum allowed VNFs on the network.
Ks The maximum allowed SFCs on the network.
b f Bandwidth demand of the flow f ∈ F.
pol f Represents the forwarding policy that is applied by the SFC to

flow f ∈ F.
Ti,j Propagation latency of the physical link (i, j) ∈ E.
Tv Processing latency due to VNF v ∈ V.
Ts Processing latency of the SFC.
Tmax

s Maximum tolerable latency of the application/user due to pro-
cessing by the service chain s ∈ S.

3.3.1.2 Objective

To maximize the number of flows admitted by the network for VNF processing.
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Maximize ∑
f∈F

α f (3.5)

The objective in (3.5) is subject to the constraints described in the following.

3.3.1.3 Constraints for VNF Placement

∑
n∈N

βu
v,n ≤ 1, ∀1 ≤ u ≤ Ku, v ∈ V (3.6)

Ku

∑
u=1

N

∑
n=1

βu
v,n ≤ Ku, ∀v ∈ V (3.7)

∑
v∈V

Ku

∑
u=1

βu
v,n · Cv ≤ Cn, ∀n ∈ N (3.8)

Constraint (3.6) allows a maximum of one active instance of a particular VNF

type per physical node. Constraint (3.7) ensures that all instances u of a particular

type of VNF v does not exceed the allowed maximum total number of instances

for that type. Constraint (3.8) states that the demand requirements of all VNF

types should not exceed the processing capacity of the physical node.

3.3.1.4 Constraints for flow-to-VNF mapping

∑
n∈N

Ku

∑
u=1

δ
u, f
v,n ≤ 1, ∀ f ∈ F, u ∈ pol f (3.9)

δ
u, f
v,n ≤ βu

v,n, ∀ f ∈ F, ∀n ∈ N, ∀1 ≤ u ≤ Ku, u ∈ pol f (3.10)

∑
n∈N

∑
f∈F

δ
u, f
v,n · b f ≤ Cv, ∀1 ≤ u ≤ Ku, v ∈ V (3.11)
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βu
v,n ≤ ∑

f∈F
δ

u, f
v,n , ∀n ∈ N, v ∈ V, 1 ≤ u ≤ Ku (3.12)

Constraint (3.9) ensures that we have a maximum of one flow per VNF instance.

Constraint (3.10) ensures that the number of flows should not exceed the total

number of active VNF instances. Constraint (3.11) guarantees that the flows

processed do not exceed the maximum processing capacity of the VNF. Constraint

(3.12) makes sure that the VNFs are not instantiated if there are no flows in the

network. Thus, the number of VNFs instantiated in the network do not exceed the

total number of flows.

Table 3.2: Binary Decision Variables.

Binary Decision Variables for VNF Placement Problem

α f Binary variable for flow admission.

βu
v,n Binary variable for VNF placement.

γ
eq, f
e Binary variable for routing a flow f to a virtual link eq ∈ Eq through

physical substrate link e ∈ E.

δ
u, f
v,n Binary variable for flow assignment to a VNF.

Binary Decision Variables for SFC Mapping Problem

βv,n Binary variable for VNF placement.

βv′
s,n Binary variable for VNF mapping to SFC on a physical node.

λev
s,e Binary variable for mapping a virtual link to a physical link.

δ
f
s,n Binary variable for mapping a flow to a SFC.

µe1,e2
s,n Binary variable for checking edges converging to a node.

3.3.1.5 Flow conservation constraints

∑
i,j∈E

γ
eq, f
i,j − ∑

i,j∈E
γ

eq, f
j,i =

K−u

∑
u=1

δ
u, f
v(in),n −

K−u

∑
u=1

δ
u, f
v(out),n,

∀ f ∈ F, eq ∈ Eq, i, j ∈ N

(3.13)
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∑
i,j∈E

γ
eq, f
i,j − ∑

i,j∈E
γ

eq, f
j,i =


α f , if i = v(in)

−α f , if i = v(out)

0, otherwise

(3.14)

∑
f∈F

γ
f
i,j · b f ≤ Bi,j, ∀(i, j) ∈ E (3.15)

Constraints (3.13,3.14) represent flow conservation constraints. Also, constraint

(3.15) constrains the flow capacity of the network to not exceed the network’s link

capacity.

The VNF placement problem is similar to the well-known class of NP-hard

problems: facility location and generalized assignment. In the following section, we

extend the VNF placement problem and formulate the SFC mapping problem.

3.4 SFC Mapping Problem

A network operator’s strategy for service provisioning across data centers should

provide a convenient mechanism for i) the placement and deployment of virtual

network functions, ii) decisions regarding the mapping of service function chains

to VNF instances and iii) how the ingress traffic flows are routed to the appropriate

service chains. In this section, we present a model for mapping SFCs for optimizing

their placement cost across multiple data centers. The model can be used to make

flow-to-SFC mapping decisions, while minimizing the deployment and placement

cost for the network operators.

3.4.1 Assumptions

We make the following assumptions with our optimization model formulation:
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• A complete (i.e. end-to-end) service corresponds to one SFC modeled as

a single line graph, comprising of ingress and egress nodes, service nodes

(VNFs), and consecutive concatenated links.

• To simplifiy the model formulations, we assume that the flow requests are

decoupled from the VNFs.

• The endpoints of all the SFCs are known a priori and have fixed location

corresponding to a node on the physical network substrate.

• The service function forwarders (SFFs) and their associated flow classifiers

(FCs) are assumed to be known a priori.

• SFCs serve aggregated traffic of a set of users requesting a specific service

from a specific location on the physical network substrate.

• Single aggregate (e.g. CPU, memory, etc.) resource type is assumed.

• SFC endpoints are assumed to be virtual nodes that are mapped to the

physical nodes, although endpoints can be physical nodes.

3.4.2 Service Function Chaining Model

In this section, we present a formulation of the SFC mapping problem. It is defined

as follows:

Definition 3.1: Given a physical network substrate graph GP(N, E), find the optimal

placement of VNFs on a service function chain to minimize the placement cost.

We denote by S the set of all service function chains (SFCs) in the network.

Each service chain s comprises of a set (V′ ⊆ V) of VNFs “chained together"

in some predefined order through virtual links. The SFC is also connected to
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a set of ingress/egress endpoints (mapped to physical nodes) that are respon-

sible for forwarding traffic through the chain. The service function path (SFP)

is formed by the set of VNFs encompassing the chain. Service classifiers are

defined at the ingress node and are tasked with mapping incoming flows to ap-

propriate SFPs. Each service chain request is characterized by a flow request, a

data rate requirement and a maximum tolerable delay specification. The SFC is

therefore a simple line graph GS(Vs, Es
v), where Vs = {v(in), v(s) ⊂ V, v(out)}

and Es
v =

(
(v(in), v1), (v1, v2), . . . , (vn, v(out))

)
, with Es

v ⊆ Ev. To differentiate

between endpoint nodes and function nodes on the service chain, we denote the

set of endpoint nodes as Vs
end = {v(in), v(out)}, and the set of function nodes as

Vs
f n = {v′} = Vs −Vs

end.

3.4.3 Network Model

The physical network substrate and the virtual network substrate are modeled as

before since there is a high correlation between the VNF placement problem and

the SFC mapping problem.

3.4.4 Problem Formulation: SFC-LP

3.4.4.1 Decision Variables

We define the following binary decision variables for the SFC mapping problem.

βv,n =


1, if VNF v is placed on a physical node

n ∈ N.

0, otherwise.

(3.16)
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βv′
s,n =


1, if VNF v′ mapped to SFC s is placed

on a physical node n ∈ N.

0, otherwise.

(3.17)

λev
s,e =


1, if virtual link ev on s is mapped to a

physical link e ∈ E.

0, otherwise.

(3.18)

δ
f
s,n =


1, if flow f is mapped to service chain

s on node n ∈ N.

0, otherwise.

(3.19)

µe1,e2
s,n =


1, if edges e1 and e2 of service chain s

converge on node n ∈ N.

0, otherwise.

(3.20)

3.4.4.2 Objective

To minimize the cost of SFC placement.

Minimize ∑
n∈N

∑
v∈V

βv,n + ∑
e∈E

∑
s∈S

∑
ev∈Es

v

λev
s,e (3.21)

The objective in (3.21) is subject to the constraints below.

3.4.4.3 Constraints for SFC placement

βv′
s,n ≤ βv,n, ∀n ∈ N, s ∈ S, v ∈ V, v′ ∈ Vs (3.22)
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∑
n∈N

βv′
s,n ≤ 1, ∀s ∈ S, v′ ∈ Vs (3.23)

∑
n∈N

βv,n ≤ Kv, ∀v ∈ V (3.24)

Constraint (3.22) ensures that the VNF must be available before we can place it

on the SFC. Constraint (3.23) makes sure that only one VNF per SFC is mapped

to one physical node. (3.24) ensures that all VNF instances in the network do not

exceed a defined maximum.

∑
n∈N

β
v(in)
s,n ≤ 1, and ∑

n∈N
β

v(out)
s,n ≤ 1,

∀s ∈ S, v(in), v(out) ∈ Vs
end

(3.25)

Further, constraint (3.25) ensures that we only have one ingress and one egress

endpoint per service chain.

3.4.4.4 Constraints for Resource Capacity

∑
v∈V

βv,n · Cv ≤ Cn, ∀n ∈ N (3.26)

∑
v∈V

βv′
s,n · Bs ≤ βv,n · Bv, ∀n ∈ N.∀v′ ∈ Vs (3.27)

∑
s∈S

∑
es

v∈Es
v

λev
s,e · Bs ≤ Bi,j, ∀e ∈ E (3.28)

The resources requested by the VNFs cannot exceed the resource capacity of the

physical node that they are mapped to, as presented in constraint (3.26). Further,

in constraint (3.27), we ensure that the VNFs have sufficient traffic processing
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capabilities to handle the traffic from all SFC that they are mapped to, and fi-

nally, constraint (3.28) ensures that the bandwidth capacity of the physical link is

sufficient to handle the traffic from all SFCs.

3.4.4.5 Constraints for Flow-to-SFC mapping

∑
n∈N

Ks

∑
s=1

δ
f
s,n ≤ 1, ∀ f ∈ F (3.29)

βv′
s,n ≤ ∑

f∈F
δ

f
s,n, ∀n ∈ N, v′ ∈ Vs, 1 ≤ s ≤ Ks (3.30)

∑
n∈N

∑
f∈F

δ
f
s,n · b f ≤ Bv, ∀1 ≤ u ≤ Ku, v ∈ V (3.31)

In constraint (3.29), we ensure that there is only one flow mapped to an SFC.

In (3.30), the number of flows that are mapped to SFCs are constrained to not

exceed the number of service chains. The bandwidth capacity of service chain is

lower-bounded by Bv as in constraint (3.31).

3.4.4.6 Constraints for Flow Conservation

Constraints (3.32,3.33) represent the flow conservation constraints for the SFCs.

This is similar the flow conservation constraints (3.13,3.14) for the VNF placement

problem.

∑
e∈E

λev
s,e1
− ∑

e∈E
λev

s,e2
= ∑

f∈F
δ

v(in), f
s,n − ∑

f∈F
δ

v(out), f
s,n ,

where e1 = (i, j) and e2 = (j, i)

(3.32)
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∑
e∈E

λev
s,e1
− ∑

e∈E
λev

s,e2
=


α f , if e1 = v(in)

−α f , if e2 = v(out)

0, otherwise

(3.33)

∑
e1,e2∈Es

v

µe1,e2
s,n ≤ 1,∀n ∈ N, s ∈ S;

and ∀e1, e2 ∈ Es
v | e2 ∈ Es

v − {e2}
(3.34)

Finally, the constraint (3.34) requires that each set of virtual links connected to

a VNF on a service chain s can only be mapped to a single node n ∈ N in the

physical network substrate. It can be seen that the SFC mapping problem is an

extension of the VNF placement problem.

Algorithm 3.1 The SFC-LP Mapping Algorithm

1: Solve the (SFC-LP) and find the mapping of GS(Vs, Es
v) to Gp(N, E) and do

the following:
2: Compute the mappings of SFC s ∈ S, ∀n ∈ N to satisfy resource/capacity

constraints Cn and Cv.
3: Obtain the flow-to-SFC allocations ∀ f ∈ F and assign a subset of the flows
{ fi} → si, ∀si ∈ S.

4: Setup service function chains ∑|Si|
j=1 si, ∀si ∈ S, ∀i ∈ {DCs} with a total of Si,j

SFCs in data center i.

The cost function in (3.35) is used to estimate the total processing cost of a

single flow by a service function chain mapped to a data center as allocated by the

SFC-LP algorithm.

CSFC−LP = C f + Cv (3.35)

where,

Cv = CB ·ωB + Cl ·ωl + Ch ·ωh (3.36)
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The total cost estimate CSFC−LP is a function of fixed and variable costs, with

the fixed cost C f depending on the number of VNFs in the SFC. The variable

cost Cv depends on the flows’ impact on bandwith, latency and associated host

(i.e. CB, Cl, Ch) costs respectively. Each component of the variable cost Cv has an

associated weight function (i.e. ωB, ωl, and ωh) to account for variations in link

bandwidth, link latency and the host resource capacity of each data center. Figure

3.2 shows the various parameters used in the cost computation. These parameters

were obtained from measurements across four data centers. Figure 3.2a shows the

number of experimental science transfers at data center 1 averaged over a period

of one month categorized by project type. Approximately 15000 experimental

science flows are processed by data center 1 every day. The available bandwidth

between data centers and the corresponding round-trip time (RTT) measurements

are as shown in Figures 3.2c and 3.2b. The data center network setup is detailed in

Section 3.6.1.

In our measurements for the data center links DC1-DC3, DC1-DC4, DC2-DC3

and DC2-DC4, we observed approximately 25%, 2% and 10% variations in available

bandwidth, RTTs and associated host processing costs respectively. These observed

variations were modeled as an uniform random distribution and incorporated in

the corresponding weight functions.

3.5 Application-Aware Flow Reduction (AAFR)

Application-awareness is achieved using the SDN-managed Network Architecture

for GridFTP transfers (SNAG) proposed in [16]. We define application-awareness

as the exchange of application-layer metadata with the network-layer, thereby

facilitating collaboration between the two layers. SNAG exposes an application
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Figure 3.2: Experimental setup parameters for different data centers.

program interface (API) and communicates the application-layer metadata associ-

ated with the underlying connections over a representational state transfer (REST)

interface. The traffic classification information in Figure 3.2a cannot be obtained

without application-awareness since GridFTP [9] protocol uses encrypted TCP

sessions between end-points for data movement.

In our work, we use SNAG to accurately identify and to differentiate experi-
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mental science transfers from the commodity Internet traffic. Thus, application-

awareness results in reduced flow processing workload for the SFCs as pre-

classified experimental science traffic are not subject to flow processing by the

SFCs in the NFVI. Subjecting only commodity Internet traffic to SFC processing is

justified since experimental science workflows incorporate multiple security com-

ponents to establish user/service identity. These components (such as X.509 PKI

and proxy certificates) are used to protect communication between end-points and

determine user credentials and authorization for specific actions. Thus, application-

awareness reduces the flow-processing workload by subjecting only commodity

Internet traffic to SFC processing. Therefore, the flow-processing cost of the

AAFR algorithm accounts only for flow-switching and associated host costs as

no resources are allocated for processing end-to-end experimental science traffic.

However, commodity Internet traffic flows incur the same cost as before. Thus,

AAFR reduces the flow processing costs by mapping SFCs only to commodity

Internet traffic.

The AAFR mapping algorithm is shown in Algorithm 3.2. The algorithm

updates the variable cost parameter (C ′v) as follows:

CAAFR = C f + C ′v (3.37)

where,

C ′v = Csw ·+Ch ·ωh (3.38)
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Algorithm 3.2 The AAFR Mapping Algorithm

1: for all { fi} ⊂ F do
2: Construct a flow set Fe
3: if SNAG( fi == TRUE) then
4: Fe ← Fe ∪ { fi}
5: F′ ← F− Fe
6: end if
7: end for
8: for all { fi} ⊆ F′ do
9: Solve the (SFC-ILP) on fi and find the mapping of GS(Vs, Es

v) to Gp(N, E).
10: Update C ′n and C ′v to reflect the new capacity requirements.
11: end for
12: Compute the mappings of SFC s ∈ S, ∀n ∈ N to satisfy the updated resource/-

capacity constraints C ′n and C ′v.
13: Obtain the flow-to-SFC allocations ∀ fi ∈ F′ and assign a subset of the flows
{ fi} → si, ∀si ∈ S.

14: Setup service function chains ∑|Si|
j=1 si, ∀si ∈ S, ∀i ∈ {DCs} with a total of Si,j

SFCs in data center i.

3.6 Experimental Study

In this section, we evaluate the performance of the SFC-ILP and the AAFR algo-

rithms. We solve the optimization problems described in Sections 3.3 and 3.4 using

IBM CPLEX 12.7.1. We create a testbed data center network and use its traffic

and resource characteristics to provide inputs to the optimization model. We then

use the SFC mapping solutions provided by the models for SFC placement and

associated flow processing. The following section outlines the data center network

setup.

3.6.1 Data Center and Network Setup

We set up four data centers as shown in Figure 3.1. Each data center is set up on a

high-performance server hosting an OpenStack Ocata cloud and SFC extensions

for NFV management. Data centers DC1, DC3 and DC4 run one compute and
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two controller nodes, with 8 cores and 128GB RAM on each node. DC2 is hosted

on a shared private cloud with 80 VCPUs and 448GB of RAM. DC1 and DC2

communicate with each other over the WAN through the same border gateway

router, and connect to the other data centers over the Internet2 backbone.

3.6.2 Results and Discussion

We employ real-world flow measurements at the Holland Computing Center

(HCC), University of Nebraska-Lincoln to model the traffic flow characteristics

between data centers. The flow costs are generated randomly based on the cross-

data center parameters presented in Figure 3.2. A total of 15000 flows with random

costs serve as inputs to the optimization models. Of the 15000 flows processed per

day on average, about 70%− 80% (randomly chosen) flows constitute experimental

science transfers with the remaining 20%− 30% forming the commodity Internet

traffic. Each node in the physical network substrate is assumed to have a fixed

resource capacity aggregate that is shared equally by all of the SFCs set up on that

data center. The total number of VNFs per SFC is assumed to be constant for all

SFCs in the network across all data centers. Unless otherwise specified, the flow

processing capacity is limited to the total number of flows (F) and shared equally

between each SFC (i.e. F/n flows/SFC for a total of n SFCs) in the network. A

fixed per-flow processing cost associated with the SFC setup on each data center is

added to the cost computation on each run. The NFVI for hosting SFCs are created

only on data centers DC1 and DC2 (service networks), with data centers DC3 and

DC4 forming the tenant networks. Thus, flows that are both internal and external to

the service networks are processed by the DC1 and DC2. In this section we present

the performance results of the SFC-ILP and the AAFR mapping algorithms.

Figure 3.3 shows the flow processing cost performance of the two algorithms
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Figure 3.3: Cost Comparison.

for increasing number of SFCs in the service network. The number of SFCs in the

service network is varied between 4 and 10 per data center and the flow processing

cost is computed for both algorithms. We show that costs reduce with increasing

number of SFCs in both cases. Increasing the number of SFCs in a data center

reduces flow queuing and facilitates faster parallel processing leading to lowered

costs. However, since SFC-ILP processes a larger number of flows it shows lower

gains (about 4.9%) from increasing the number of SFCs compared to AAFR which

shows gains of about 47%. In comparison to SFC-ILP, AAFR shows reduced cost

gains between 47%− 70% for the same number of SFCs for both algorithms. We

present the execution time performance for both algorithms in Figure 3.4. Both

algorithms perform comparably, with AAFR performing about 5% faster than

SFC-ILP.

We present the flow processing cost for the capacitated and uncapacitated

versions of both algorithms in Figure 3.5. For the capacitated case, we limit the
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Figure 3.4: Performance Comparison.

flow processing capacity of each SFC equally to F/n for F flows and n SFCs in the

network. This results in a SFC mapping problem that is similar to the capacitated

facility location problem wherein each facility has a fixed processing capacity. We

refer to this as the capacitated-SFC mapping problem (SFC-ILP-C and AAFR-C).

We compare the above to an uncapacitated-SFC mapping problem (SFC-ILP-U and

AAFR-U). Our evaluations show limited gains when each algorithm is compared

to its uncapacitated counterpart i.e. SFC-ILP-C vs. SFC-ILP-U and AAFR-C vs.

AAFR-U. The cost-gains are about 0.6% and 4.1% for the SFC-ILP and the AAFR

algorithms respectively. For the AAFR algorithm, the 4.1% cost-gain is in addition

to the 47%− 70% gains described before when per-SFC processing capacity limits

are increased to large values. Thus, increasing the SFC flow processing capacity to

an arbitrarily large value does not lower flow processing costs.

The impact of the number of VNFs per SFC on mapping costs are as shown in
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Figure 3.6. The SFC mapping costs increases monotonically with a corresponding

increase in the number of VNFs per SFC. The number of VNFs for each service

chain is varied between 2 and 7 and we show that the costs increase by about

18.7% on average per additional VNF in the service chain for both algorithms.

In Figure 3.7, we present the flow distribution across SFCs in each data center

for both algorithms. This evaluation is an extension of the uncapacitated-SFC

mapping problem described above. The evaluation is presented for the #SFC = 4

case for each data center in the service network. The result in Figure 3.7 shows the

cumulative average number of flows placed in each SFC. We see that about 95.9%

of the flows were mapped to the first three SFCs in the case of SFC-ILP, whereas

only 70.25% of flows were mapped in the case of AAFR. Therefore, the majority of

the flow processing load falls on roughly two-thirds of the SFCs in the network

when SFC-ILP is used. Thus, AAFR is better at load balancing and mapping flows
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to SFCs in each data center due to reduced flow-processing workloads compared to

SFC-ILP. Thus, our evaluations show that the AAFR algorithm effectively reduces

flow processing workloads across data centers by using application-aware flow

classification.

3.7 Related Work

Recently, numerous works have focused on NFV resource allocation (NFV-RA)

that deals with allocating network infrastructure resources demanded by virtual

network services. A comprehensive survey is provided in [58]. VNF resource allo-

cation looks at VNF forwarding graph embedding (VNF-FGE) and VNF scheduling

(VNF-SCH) problems, with solutions focusing on embedding virtual networks

into a physical network substrate. A few recent works [59, 60, 61], focus on VNF

placement problems. The authors in [59] propose a near-optimal solution for the
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NFV location problem. They evaluate the solution performance with respect to

setup and distance costs, and provide a bi-criteria solution within the specified

capacity constraints. The authors in [60, 61] look at efficient VNF placement to

aid service function chains. Both works propose ILP formulations for the VNF

placement problem. The optimization models focus on VNF placement resilience

and end-to-end latency reduction. Other works such as [62, 63] focus on the

placement/resource allocation of specialized VNFs (e.g. vFirewalls or vDPIs). The

authors in [62] model vDPI placement as a ILP multi-commodity flow problem

and propose a greedy heuristic to reduce the placement cost. The work in [63]

looks at optimizing resource allocation for elastic VNFs in cloud environments.

SFC placement/embedding problems are discussed in [64, 65, 66, 67, 68]. The

work in [64] looks at how to optimize the deployment of SFCs for new users while

balancing and readjusting the existing users’ SFC to minimize deployment costs.

A column generation scheme is designed based on service feasibility solution of
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the ILP to approximate its solution. An ILP formulation and a heuristic algorithm

for QoS guaranteed service function chain placement across multiple clouds is

proposed in [65]. Each function of the SFC is modeled as a hidden markov model

state transition and most-likely state sequence prediction is used to decide which

VNFs have to be outsourced to a cloud. The proposed heuristic results in cost

savings for VNF placement in the cloud compared to local placement. A service

function selection algorithm is proposed in [66] to balance a service function’s

path distance and its load. The proposed algorithm considers load, latency and

QoS class constraints to select service function paths during the initial deployment

of the SFC across multiple data centers. Joint topology design and SFC mapping

for Telco clouds is explored in [67] with the objective of minimizing bandwidth

consumption. The proposed method uses feedback from critical sub-topology

mappings to optimize SFC mapping. The work in [68] proposes an MILP solution

for joint optimization of the different phases on NFV-RA i.e. NFV composition,

VNF-FGE and VNF-SCH. An online NFV tools is developed using a heuristic-based

algorithm.

Application-awareness with SDN is a fairly new area of research. Although

deep packet inspection (DPI) can be employed to achieve application awareness,

it is not applicable to encrypted transports. Therefore, we limit our application-

awareness discussion to works that implement seamless application metadata

exchange (without resorting to DPI) between application- and network-layers. Such

works are limited to [69, 70, 71]. SNAG [16] introduced application-awareness for

data-intensive science and has been used to create novel NFV-based approaches to

securing scientific data transfers [72].

In this work, we focus on optimizing service chain mapping across multiple data

centers. Our work utilizes the NFV placement optimization strategies combined
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with application awareness for effective SFC mapping.

3.8 Conclusions

In this work, we formulate the SFC mapping problem for multi-data center network

topology and present an integer linear programming formulation. We propose

a novel application-aware flow reduction (AAFR) algorithm which significantly

reduces the flow processing costs across multiple data centers. While SFC-ILP

provides the optimal SFC mapping, the proposed AAFR algorithm simplifies the

SFC-ILP to reduce the flow-processing workloads for the mapping in the service

network. We evaluate the performance of our AAFR algorithm and quantify the

impacts of the number of SFCs and the SFC length on mapping cost, compare

capacitated/uncapacitated cost gains, and finally investigate balancing flow-to-SFC

mappings across data centers. Extensive performance evaluations show that our

proposed AAFR algorithm reduces flow-processing costs by 70% for the capacitated

SFC mapping case over the SFC-ILP. Further, for AAFR-U, our algorithm provides

an additional 4.1% cost-gain over the AAFR-C case. We also demonstrate that our

proposed AAFR algorithm is better at balancing flow-to-SFC mappings due to

reduced flow-processing workloads.
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Chapter 4

APRIL: An Application-Aware, Predictive and Intelligent Load

Balancing Solution for Data-Intensive Science

4.1 Introduction

Recently, software defined networking (SDN) [73] and big data technologies [6]

have received significant interest from both academia and industry. While big

data, characterized by “5Vs” (volume, variety, velocity, value, and veracity), can

have profound impacts on network design, such aspects have traditionally been

addressed separately from the SDN paradigm. Some SDN features including

control/data plane separation, programmability/reconfigurability, and logical

centralization can positively benefit big data tasks such as data acquisition [74],

delivery [75, 76, 77] and storage [78].

An ever-increasing need for big data in science has led to the rapid adoption

of flexible (and programmable) high-speed network infrastructure. Such infras-

tructures typically rely on 100 Gbps links to support large-scale data movement.

As an example, the high-energy physics community through the Large Hadron

Collider (LHC) project, has experimental data transfers reaching tens of petabytes

every year. Example data-intensive science workflows include the Compact Muon

Solenoid (CMS) [7] and Laser Interferometer Gravitational-Wave Observatory
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(LIGO) [24]. The most popular tools for big data movement include GridFTP [9]

and XROOTD [10]. Since scientific research is highly data-driven, they place an

undue burden on campus networks for data delivery, storage, and processing.

Flexible and scalable end-to-end network architectures are necessary to ensure

that data transfer applications use the network efficiently. Numerous scientific big

data architectures have been developed (e.g. [79, 80, 13, 81]) to avoid performance

hot-spots associated with traditional networks.

Numerous research efforts (e.g., [82, 83, 84]) have focused on SDN-based

efficient network resource allocation algorithms and techniques for cloud and data

center networks. However, most of these techniques target the optimization of

network resources allocation based on factors such as traffic demand/loads, quality

of service (QoS) requirements and usage patterns. Such key factors are generally

highly volatile and time-varying in nature. Limited work has been done to model

data transfers, or to predict the key factors that affect network resource allocation.

Load balancing forms a critical component of big data network architectures as

they directly influence application response times and maximize throughput via

optimized traffic delivery to the application servers. Large-volume data transfers

associated with big data provides many opportunities for understanding usage

patterns and gain insights into network resource requirements. Rather than

viewing big data systems as placing an undue burden on campus networks, we

can exploit the insights gained in better understanding user/traffic demands.

This results in optimized resource allocation to better serve the needs of campus

network users.

In this work, we propose a novel intelligent load-balancing technique for

improving server utilization using application-aware SDN and deep learning ap-

proaches. We also propose a deep learning approach for modeling large data
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transfers in the campus network. Deep learning is a representational learning

technique that can automatically discover data representations using a multi-layer

network [85]. The representation is then used to infer large dataset information

without the need for complex analysis. In this work, we demonstrate how deep

learning based predictors can be utilized to make accurate predictions and forecast

future network connections by relying on application-layer metadata. We imple-

ment two RNN variants for GridFTP connection time-series predictions. First, we

explore a long short-term memory (LSTM) [86] based deep learning model for

GridFTP predictive analytics. Next, we implement a gated recurrent unit (GRU)

[87] based deep learning model. Our model incorporates an application-aware

SDN system to classify traffic and to facilitate application-layer metadata exchange

with the network-layer. We evaluate the efficacy of these models for both univariate

and multivariate GridFTP datasets. To the best of our knowledge, this is the first

effort to leverage application-aware SDN and deep learning techniques for model-

ing/predicting big data science data transfers for load balancing applications. We

also show the effectiveness and superiority of our approach by evaluating it with

a real-world dataset from a major U.S. CMS Tier-2 site. Further, we also present

a deployment strategy to integrate APRIL predictive analytics, development of a

GridFTP predictor model registry, service APIs for exposing the APRIL predictive

service to external systems, and an approach to integrate APRIL for load balancing

GridFTP servers.

4.1.1 Contributions and Organization

The specific contributions of this chapter are as follows:

1. RNN-based Deep Learning Predictive Analytics: We develop a long short-term
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memory (LSTM) and a gated recurrent unit (GRU) based deep learning

model for GridFTP connection time-series prediction. The model employs

an application-aware SDN approach to obtain accurate and reliable traffic

classification information to forecast future connections.

2. Novel Application-aware Load Balancing: We propose a novel application-aware,

predictive and intelligent load balancing algorithm (APRIL). APRIL combines

application-layer metadata with deep learning predictive analytics resulting

in an intelligent load balancer.

3. Real-world large-scale dataset: We demonstrate our model’s effectiveness

through extensive evaluations using a real dataset from a U.S. CMS Tier-2

site. We present detailed data analysis to discover and identify long-term

temporal dependencies in the dataset. We also compare our deep learning

predictive model with other approaches such as Autoregressive integrated

moving average (ARIMA) and multi-layer perceptron predictors.

4. Scalability and Improvements over LVS: We also demonstrate the scalability of

our solution by deploying our model on a project testbed network that has

been set up to integrate with a U.S. CMS Tier-2 site. We compare the benefits

and superiority of our solution with an existing production Linux Virtual

Server (LVS) cluster.

5. APRIL Deployment Strategy: We present a deployment strategy to integrate

APRIL predictive analytics module and the APRIL load balancer with the

GridFTP ecosystem. We also present various deployment components, in-

cluding the APRIL predictive analytics module, model registry and service

APIs.
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This chapter is structured as follows: Section 4.2 provides a brief overview

of application-aware SDN in the context of load-balancing, the role of predictive

analytics, and describe related works; Section 4.3 presents the exploratory analysis

of our dataset; In Section 4.4, we detail our experimental network testbed, data

management system and our experimental setup; Section 4.5 presents our uni-

variate deep learning models and approaches to predicting GridFTP connection

transfers. We describe and evaluate our Long Short-Term Memory and Gated

Recurrent Unit (GRU) based load modeling and predictive analytics for forecasting

GridFTP transfers across multiple servers. In Section 4.6, we present and evalu-

ate the performance of multivariate RNN models using LSTM and GRU-based

deep learning networks. The multivariate forecasting models predict GridFTP

connections by taking a wider range of transfer parameters into account. In Section

4.7, we present our intelligent application-aware load-balancing solution (APRIL)

for managing distributed high-throughput data transfers in the campus network.

Section 4.8 presents the APRIL deployment strategy and integration with the

GridFTP servers. We present the APRIL predictive analytics module workflow

and pipelines, model registry and service API endpoints and integration with the

GridFTP system. Lastly, in Section 4.9, we conclude our work and discuss the

future work.

4.2 Related Work

Numerous research efforts have focused on developing SDN load balancing mech-

anisms. The work in [88] presents a comprehensive survey on SDN load balancers.

However, most of these are based on traffic routing mechanisms, or improve factors

such as latency, synchronization, QoS, etc., or use heuristic optimizers to improve
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Figure 4.1: Temporal autocorrelation properties of the datasets.
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performance. Other works such as [89, 90] focus on LVS performance improve-

ments. Although load balancers support specific transport-layer protocols, limited

work has been done to develop true application-aware load balancing systems.

Recent efforts such as [91, 92, 93] leverage machine/deep learning techniques for

traffic classification and/or predictions. Integrated SDN and deep learning tech-

niques have also be employed in VNF placement in NFV networks [94] and SDN

security among others. A univariate autoregressive integrated moving average

(ARIMA) based prediction framework was developed for forecasting GridFTP

transfers in [95]. The model integrates with an application-aware SDN solution

to preemptively drive network management decisions. However, the predictions

are limited to a univariate dataset and the work does not address the scalability

concerns associated with data-intensive science transfers. Different from the above,

our work focuses on leveraging deep learning techniques to accurately model and

predict the data-intensive science traffic load by exploiting an application-aware

SDN solution. Further, we develop a novel intelligent load balancer that combines

both application-layer metadata and future forecast knowledge to improve server

utilization.

4.3 Data Analysis and Modeling

Data analysis and modeling is an essential step in providing us valuable insights

about the temporal dependencies in the dataset. This information is critical to

choosing an appropriate data and prediction model for improved forecast accuracy.

In this section, we present our dataset used in the modeling and prediction. We

also perform exploratory data analysis on the dataset to motivate our design

choices.
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4.3.1 Dataset

The dataset consists of GridFTP transfer connection data obtained from a major

U.S. CMS Tier-2 site that performs frequent high-volume (low- and high-priority)

transfers to Fermilab and holds over 3 petabytes of data. The site uses both the

GridFTP protocol and XROOTd for bulk batch transfer jobs and interactive jobs,

respectively. The data was obtained using an application-aware approach similar to

the ones in [16, 17]. The dataset includes GridFTP connection information collected

from a single U.S. CMS Tier-2 site over two years. The dataset represents over 800

million GridFTP connections from both CMS and LIGO workflows. The dataset

contains connection information classified by four CMS user roles (as defined in

the CMS computing model [7]) and a single LIGO user role. A pool of twelve

(12) GridFTP servers are employed by the site to serve both campus network

users and external researchers. The four CMS user roles include: i) US CMS Pool

representing analysis transfers associated with users’ jobs, ii) CMSProd similar

to (i), but representing production workflows, iii) CMS PhEDEx representing the

CMS production data movement, iv) LCG Admin representing site availability

monitoring transfers. The LIGO user role represents LIGO transfers that are

opportunistic and share networking resources with CMS users. Other users

include site administrators and computing center staff.

The GridFTP protocol uses encrypted control and data channels for data

movement between end-points. Application-layer metadata is crucial for classifying

the GridFTP connection information. Therefore, we rely on the GridFTP XIO

plugin [96] to securely interface with the GridFTP servers and facilitate application

metadata exchange with the SDN. The obtained connection information is pre-

classified based on its workflow (or experiment) membership and also based on
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the user role within the workflow. User roles not belonging to either workflow

are classified as “Other” users. The default dataset measurement granularity is in

the order microseconds. However, as this granularity does not permit meaningful

analysis, we use data aggregation to obtain aggregate statistics with granularities

of one minute and one hour respectively. A nonuple (i.e., 9-tuple) is used to

identify each connection uniquely and includes connection strings, user/workflow

membership, files transferred, transfer direction and a status field. We denote

the GridFTP connection dataset by G = {g(a1,··· ,a9),n,t}, ∀t, ∀n ⊂ N. We denote

the downlink and uplink connections by D = {d(a1,··· ,a9),t}, ∀t, ∀n ⊂ N and U =

{u(a1,··· ,a9),t}, ∀t, ∀n ⊂ N, respectively, for N observations. We normalize both

datasets D and U within a range of [0, 1]. To achieve this, we use Min-Max scaling

to compute the normalized values Ĝ as:

Ĝ =
G−Gmin

Gmax −Gmin
(4.1)

where, Gmax and Gmin represent the maximum and minimum values of the set G,

respectively. Also, we note that D ⊂ G and U ⊂ G. Lastly, we denote the datasets

with different measurement granularities by Gm (one minute) and Gh (one hour),

respectively.

4.3.2 Exploratory Analysis

The objective of our exploratory data analysis is to discover and identify data

dependencies in G, D and U in the temporal domain. Initially, we analyze the

dataset for the presence of systematic patterns combined with random error. By

identifying and removing non-stationary processes within the dataset, we can

obtain a dataset with independent identically distributed (i.i.d.) components that
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Figure 4.2: Short- and long-run dataset properties and cross-correlation.

are amenable to modeling using linear regression on exogenous variables. We

also examine temporal autocorrelation and data dependency between different

user roles for both datasets, i.e., D and U, respectively. We make the following

important observations:

Observation 1: The dataset G exhibits non-stationarity.

We denote the kth observation as Gk = g(a1,··· ,a9),k,t. The dataset G is strictly
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stationary if:

(G1, G2, · · · , Gn)
′ d
= (G1+h, G2+h, · · · , Gn+h)

′, ∀n ≥ 1 (4.2)

where, d
= denotes that the two random vectors share the same joint distribution

function. The Augumented Dickey-Fuller (ADF) test is a widely used tool to test

stationarity [97]. The autocorrelation plots of the two downlink datasets with

measurement granularities of one minute and one hour are shown in the Figure

4.1. Figures 4.1a and 4.1b represent the short-run dataset (measured over 300

minutes and 240 hours, respectively), while Figures 4.1c and 4.1d represent the

corresponding long-run datasets (measured over 5 and 60 days, respectively). The

presence of significant autocorrelation in the lags for time t > 1 is an indicator

of non-stationarity. This is also verified by running the ADF test on the above

datasets, resulting in the test accepting the null hypothesis, indicating a non-

stationary process. Thus, (first-order) differencing is required to stationarize the

datasets.

Observation 2: The dataset G has non-zero temporal autocorrelation properties.

In the absence of significant autocorrelation, the data points in Figure 4.1 fall

within the confidence interval bands represented by the dashed lines. The sample

autocorrelation function (ACF) is commonly used to identify and discover data

dependency between the observations. We define the sample ACF for the dataset

G by:

ρ(h) =
γ̂(h)
γ̂(0)

=
∑n−|h|

t=1 (Gt+|h| − Ḡ)(Gt − Ḡ)

∑T
t=1(Gt − Ḡ)2

,−n < h < n (4.3)

where, Ḡ represents the sample mean of G1, G2, · · · , Gn, and n is the total number

of observations in the sample. The autocorrelation plots shown in Figure 4.1
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exhibits high values for ρ for lags h > 1. This indicates the presence of systematic

patterns mixed with random errors.

Observation 3: The dataset G exhibits low cross-correlation in the temporal domain,

between different user roles.

We use the correlation matrix to assess the strength of the relationship between

two user roles with either the same, or, with different workflow memberships.

Figure 4.2 shows the correlation matrix heatmaps for the short-run datasets (both

1m and 1h aggregates) along with the corresponding box-whiskers plots. Only

the lower triangular correlation matrix is presented in the correlation heatmaps

for brevity. As shown in the Figures 4.2a and 4.2c, we observe low to moderate

cross correlation between the users’ transfer connections for both datasets. For

the short-run dataset with one-minute aggregates Dm, we see low- to moderate

positive correlation between different users’ transfers and low negative correlation

in one instance. Similarly, we see low positive correlation between the users’

transfers for the short-run dataset with hourly aggregates Dh. Both correlation

matrices represent the users’ connection transfer relationships, and provide some

insight into the number of parameters required to estimate them. The box plots for

datasets Dm and Dh are shown in Figures 4.2b and 4.2d, respectively. From the box

plot, we observe that the CMSPool users exhibit large variations across both Dm

and Dh datasets. CMSProd and Other show large hourly variations, while LIGO

and PhEDEx exhibit little variation across datasets but have significant outliers.

The box plots are useful in helping us understand the distribution characteristics

of the datasets and in outlier detection.



101

4.4 Experimental Testbed

In this section, we present our experimental setup, an application-aware architec-

ture to integrate with the GridFTP server pool, our data management framework,

the testbed network topology, and how it interfaces with the Linux Virtual Server

(LVS) [98] load balancing cluster. Our experimental network topology is shown

in Figure 4.3. It consists of five components namely: (i) the GridFTP server pool,

(ii) the LVS load balancing cluster and a LVS redirector, both of which are trans-

parent to end-user applications, (iii) the application-aware SDN infrastructure,

(iv) the Elastic stack cluster for data management, and (v) the SDN data plane

infrastructure and 100 Gbps connectivity to the wide area network (WAN).

4.4.1 Application-aware SDN and GridFTP Integration

Application-awareness is achieved using the Globus eXtensible I/O (XIO) [96]

extensible I/O library. We develop a Globus XIO SDN Callout to interface with

the SDN infrastructure. The XIO Callout module integrates GridFTP servers with

the SDN via an SDN application similar to SNAG [16]. It also uses a Hadoop

Distributed File System (HDFS) plugin to interact with GridFTP servers’ distributed

storage/processing infrastructure. The XIO Callout module facilitates the exchange

of application-layer metadata with the SDN infrastructure.

4.4.2 Network Testbed Topology

Our network testbed setup is an exemplary implementation of an SDN that

can handle frequent, high-volume, low- and high-priority data transfers from

a major U.S. CMS Tier-2 site to Fermilab. The U.S. CMS Tier-2 site holds over

3 PB of data, and uses both GridFTP and XROOTD protocols for bulk batch

transfer jobs and interactive jobs, respectively. Our testbed network architecture
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Figure 4.3: Experimental Testbed.

effectively combines several important components including: (i) Intelligent flow

control, flow forwarding and management using the ONOS SDN controller, (ii)

An application-aware SDN application to facilitate secure exchange of application-

layer metadata with the network-layer, (iii) A GridFTP Callout module that serves

as an interface between the GridFTP servers, its HDFS storage backends and the

SDN infrastructure. The XIO callout communicates with SDN controller using a

secure representational state transfer (REST) application programming interface

(API), and (iv) A Brocade MLXe border router at the campus network edge with

100 Gbps WAN connectivity to Internet2. A Dell S6000 40 GbE switch to serve

as the CMS cluster network core hosting 12 production GridFTP servers and an

Edge-Core AS4600-54T SDN-capable switch for testing purposes.
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4.4.3 Data Management System

Our current dataset includes information of over 800 million GridFTP transfer

connections from both CMS and LIGO workflows. This dataset is consistently

growing as it is updated with new real-time connection information, while also

being expanded to other workflows. To manage this large dataset, we employ a 11-

node Elastic stack [43] cluster with the following configuration: (i) Master Nodes:

3×Dell SC1435, 16GB RAM, 250GB HDDs, (ii)Hot-Data/Ingest Nodes: 3×Sun

SunFire X2200, 32GB RAM, 240GB SSDs, (iii) Warm Data Nodes: 5×Sun SunFire

X2200, 32GB RAM, 2TB HDDs, and (iv) 1Gb Ethernet interconnects between all

nodes.

This Elastic cluster is responsible for storing all application-aware information

exchanged between the GridFTP server pool and the SDN infrastructure. A syslog

style file on each of the 12 GridFTP servers feeds a filebeat agent (a lightweight

data shipper for the Elastic stack), which in turn feeds the logstash, a server-side

data ingestion pipeline on the Elastic cluster.

4.5 Univariate Load Modeling and Predictive Analytics

4.5.1 Overview

We propose the use of recurrent neural networks (RNNs) for modeling and pre-

dicting time-series data. RNNs are a class of generalized feed-forward neural

networks that exhibit dynamic temporal behavior and can, therefore, be used

for time sequence modeling. The RNN can maintain and use internal states

(memory) to process input sequences. However, standard RNNs suffer from well-

known problems of vanishing/exploding gradients and therefore, using RNNs

to model long-term dependencies is difficult [99]. Many solutions have been
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proposed including long short-term memory (LSTM) [100] and gated recurrent

units (GRU) [87] to capture and model long-term temporal dependencies [101].

Both LSTM and GRU use “forget” gates that enable a model to both learn to forget

previous states (i.e., dropping memory), and to update current states (i.e., adding

new memory). In this section, we present the RNN univariate models used to

predict GridFTP connection transfers classified by user type and transfer direction.

(a) Single RNN Neuron. (b) An Unrolled RNN Network.

Figure 4.4: RNN Network Structure.

A recurrent neural network (shown in Figure 4.4) is similar to a feedforward

neural network with a significant difference, namely, a backward-pointing connec-

tion with each neuron feeding its output back to itself. Figure 4.4a shows a single

RNN neuron. Figure 4.4b shows an unrolled RNN network, with each neuron

receiving input and its output from a previous time step. During a time step t,

each recurrent neuron processes x(t), an input vector, and y(t−1), an output vector

from the previous time step (i.e. t − 1). Thus, each recurrent neuron has two

weight vectors w(x) and w(y). For a single recurrent layer, we can combine w(x)

and w(y) from each neuron to form W(x) and W(y) weight matrices, respectively.

Given a bias vector b and an activation function φ(·), the output of a recurrent

layer is given by:

y(t) = φ(WT
x · x(t) + WT

y · y(t−1) + b) (4.4)

As each recurrent neuron’s output is a function of all inputs from previous steps,



105

the neurons are also referred to as memory cells. We denote the recurrent cells’

state at time t by h(t), where h(t) = f (x(t), h(t−1)).

Recurrent neural networks (RNN) suffer from numerous problems, including

unstable gradients problem and short-term memory problems. Works such as [102]

and [103] have explored normalization techniques to solve the unstable gradient

problem with limited gains. As data transformations during RNN traversals lead

to information loss at each time step, long-term memory cells were proposed.

One of the most popular long-term memory cell solutions is the long short-term

memory (LSTM) [86].

Figure 4.5: Long Short-Term Memory (LSTM) Cell.

An LSTM cell is shown in Figure 4.5. Unlike an RNN cell, an LSTM cell state

is divided into a short-term state, h(t), and a long-term state, C(t). As shown

in Figure 4.5, the long-term state C(t−1) first traverses through a forget gate to

drop some prior memory. It then adds new memories selected by the input

C̃(t). The input vector x(t) and the short-term state vector h(t−1) are fed to four

fully-connected (FC) units. The outputs of three fully-connected units form gate
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controllers, namely: (i) the forget gate f(t), (ii) the input gate C̃(t), and (iii) the

output gate o(t). The output of the second FC unit g(t) contributes to the outputs

C(t) and h(t).

The LSTM cell state computations are summarized below:

f(t) = σ(WT
x f · x(t) + WT

h f · h(t−1) + b f ) (4.5)

i(t) = σ(WT
xi · x(t) + WT

hi · h(t−1) + bi) (4.6)

o(t) = σ(WT
xo · x(t) + WT

ho · h(t−1) + bo) (4.7)

C̃(t) = tanh(WT
xC̃ · x(t) + WT

hC̃ · h(t−1) + bC̃) (4.8)

C(t) = f(t) ⊗ C(t−1) + i(t))⊗ C̃(t) (4.9)

C(t) = f(t) ⊗ C(t−1) + i(t))⊗ C̃(t) (4.10)

In the above equations, the matrices WT
x f , WT

xi, WT
xC̃, WT

xo represent the x(t)

(input vector) connection weights. The matrices WT
h f , WT

hi, WT
hC̃, WT

ho represent the

h(t) (short-term state vector) connection weights. Lastly, the terms b f , bi, bo, bC̃

represent the bias terms for each layer. We use a deep LSTM network to make

GridFTP connection predictions. Additional details of the deep LSTM network are

provided in Section 4.5.2.

We also evaluate the use of a deep GRU network to make GridFTP connection

predictions. A GRU cell is shown in Figure 4.6. The GRU cell is a simplified

version of LSTM cell, but is known exhibit similar performance [104].

Unlike LSTM, both state vectors in GRU are merged into a single vector h(t).
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Figure 4.6: Gated Recurrent Unit (GRU) Cell.

The GRU cell state computations are summarized below:

z(t) = σ(WT
xz · x(t) + WT

hz · h(t−1) + bz) (4.11)

r(t) = σ(WT
xr · x(t) + WT

hr · h(t−1) + br) (4.12)

g(t) = tanh(WT
xg · x(t) + WT

hg · (r(t) ⊗ h(t−1)) + bg) (4.13)

h(t) = z(t) ⊗ h(t−1) + (1− z(t))⊗ g(t) (4.14)

The terms W and b denote the weight matrix and the bias terms, respectively. Two

types of activation functions are used by the fully-connected (FC) units namely: (i)

σ(·), which is the sigmoid activation function, and (ii) tanh(·) = 2σ · 2(x)− 1, the

hyperbolic tangent function. The terms ⊕ and ⊗ denote the sum and dot products,

respectively. The update gate z(t) helps the model control the amount of historical

information passed to the next state. A reset gate r(t) controls the amount of past

information to forget. We note that a single gate controller is used to control both
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the update gate and the input gate. Whenever a new memory must be stored, its

(storage) location is erased first. Lastly, in comparison to an LSTM cell, we also

note the absence of an output gate, and a full state vector is an output at every

time-step.
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4.5.2 Temporal Prediction Model

Taking the observations in Section 4.3.2 into consideration, we develop both

LSTM and GRU-based deep learning networks to model and predict the temporal

GridFTP connection information classified by user role. In this section, we focus

on developing univariate models to predict individual user behavior for a given

transfer direction. These deep learning networks will forecast per-role connections

for both CMS and LIGO users. We build separate models for each user role, and

the predictive analytics system chooses the best model on a per-role basis to make

effective forecasts. In the case of an LSTM memory cell, both short-term (h(t)) and

long-term (C(t)) states are updated based on combining the input state with the

past state. We describe this process in Equations 4.5–4.10. The GRU memory cell

updates the current hidden state h(t) by combining the input and the past state as

described in Equations 4.11–4.14. To predict the future value Gk,t+1 = g(a1),k,t+1,

we rely on past T observations, i.e. ∑t
τ=t−T Gk,τ. For both networks (LSTM and

GRU), a 3-layer deep RNN with 64, 32 and 16 cells is used for forecasting per-role

future connection values. We use a step-size of seven (7) at the input layer. The

input is normalized using a min-max scaling defined in Equation 4.1. A dropout

layer is added to final hidden layer with a probability of 50% to avoid overfitting.

We also note that Adam optimizer [105] was used with a training batch size of 16,

with a linear activation function at the output layer. A detailed list of the deep

learning models’ parameters are presented in Table 4.1.

4.5.3 Performance Evaluation

We compared our deep RNN models with two other time series analysis and

prediction methods. First, we compare the prediction capabilities of our models
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Figure 4.7: Predicted values vs. Actual Dm measurements by user role.

with an Autoregressive integrated moving average (ARIMA) [106] multi-step

predictor. ARIMA is a widely used method for time-series analysis and forecasting

[106]. An ARIMA model is selected by minimizing the model’s Akaike Information

Criterion (AIC). The ARIMA model has three parameters: the AR model order p,

the MA model order q, and the differencing component d. The model parameters

(p,d,q) search-space is upper-bounded by (10,2,10). Next, we compare our models

with a deep multi-layer perceptron (MLP) predictor consisting of three dense

hidden layer with 64, 32, and 16 fully connected units, a dropout layer added to

the final hidden layer with a probability of 50%, hyperbolic tangent activation

functions at the hidden layer and linear activation at the output layer.

We compare the performance of our models with the ARIMA and the MLP

predictors using three widely used performance metrics namely: (i) Mean Ab-
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Figure 4.8: Univariate prediction model performance categorized by user role.

solute Error (MAE), (ii) Mean Squared Error (MSE), and (iii) the coefficient of

determination (r2 score). We also present the root mean squared error (RMSE)

metric measurements for convenience. The dataset used in making the predictions

Gm (1-minute aggregate granularity), was measured over 5 days and contained

over 512,000 GridFTP transfer connection records from six user roles described
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in Section 4.3.1. Our dataset is initially classified by data transfer direction, i.e.,

uploads and downloads. This dataset is further partitioned into a training set

and a validation set, categorized by user roles. Next, we present the prediction

results of our univariate deep RNN models and compare it with ARIMA and MLP

forecasting models.
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Figure 4.9: Multivariate prediction model performance categorized by dataset
(min-max scaling).
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Figure 4.10: Multivariate prediction model performance categorized by dataset
(standard scaling).

4.5.4 Prediction Results and Discussion

The prediction results for the Dm dataset (downlink connections 1-minute aggre-

gate granularity) is shown in Figure 4.7. Figures 4.7a, 4.7b, 4.7c and 4.7d show the
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actual vs. predicted connection values for US CMS Pool, CMS Prod, CMS PhEDEx

and LIGO users, respectively. From the results, we see that predicted results

show a good fit with actual observations. The prediction models’ performance

categorized by user role is presented in Figure 4.8. Specifically, we present the

MAE, MSE, RMSE and r2 scores in the Figures 4.8a, 4.8b, 4.8c, and 4.8d, respec-

tively. First, we compare the prediction performance gains of the GRU model over

ARIMA and MLP models. Our proposed GRU model, depending on the user role,

shows an improved error performance between 22.03%–65.96%, 23.8%–92.6%, and

13.37%–72.87% regarding MAE, MSE and RMSE, respectively over the ARIMA

model. Our model also shows r2 score improvements between 21.8%–217.14%

over the ARIMA model. Further, our model, in comparison to the MLP model,

shows an improved error performance between 3.28%–62.8%, 5.88%–85%, and

2.93%–62.36% regarding MAE, MSE and RMSE, respectively. It also shows r2 score

improvements between 8.06%–105.64% over the MLP model.

Next, we compare the LSTM model performance over ARIMA and MLP. De-

pending on the user role, our LSTM model shows error performance improve

between 22.91%–98.94%, 28.57%–99.99%, and 14.46%–99.48% regarding MAE, MSE

and RMSE, respectively over the ARIMA model. Our LSTM model also shows r2

score improvements between 10.27%–201.49% over the ARIMA model. Further, in

comparison to the MLP model, our LSTM model shows an improved error perfor-

mance between 4.37%–98.8%, 11.76%–99.99%, and 4.15%–99.28% regarding MAE,

MSE and RMSE, respectively. Our LSTM model also shows r2 score improvements

between 4.09%–95.49% over the MLP model.

When comparing LSTM vs. GRU, we observe that both models perform

similarly. The models’ error performance is within 1.13%, 6.25% and 2.36% of

each other regarding MAE, MSE and RMSE, respectively. A significant difference
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between the models is the total number of network training parameters outlined in

Table 4.1, which leads to increased training times for the LSTM network. The above

results show the effectiveness of our GRU-based deep RNN model in making

accurate GridFTP connection load predictions. Also, importantly, the superiority

of our design ensures that it takes long-term temporal dependencies into account.

Such a system is vital in providing timely intelligence to load balancing systems. In

the following section, we develop and evaluate multivariate prediction models for

GridFTP connection transfers by combining user roles, transfer directions, transfer

file sizes, and server locality into account.

4.6 Multivariate Load Modeling and Predictive Analytics

4.6.1 Overview

Thus far, we have explored univariate models for GridFTP predictive analytics. In

this section, we explore multivariate deep learning models that employ a compre-

hensive range of GridFTP connection parameters to forecast future connections.

Notably, we evaluate model learning based on a multivariate GridFTP dataset

consisting of a few new parameters including transfer file size, user role, transfer

direction and server locality. These additional parameters provide further context

to model and can help improve predictive analytics.

We extend the recurrent neural networks (RNNs) described in the previous

section to model and forecast multivariate GridFTP datasets. Our multivariate

dataset consists of GridFTP transfers measured over seven days, aggregated into

one-minute intervals. We first classify these aggregates by user role, then by

transfer direction and finally by server locality. The goal is to forecast data transfer

sizes by user roles for each direction and by server locality. At each time step,
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the RNN processes a 5-tuple consisting of connection timestamp, file size, user

role, direction and server locality. Further, we also explore model performance

by limiting the dataset to a single transfer direction. In this case, our dataset

is composed of a 4-tuple for each direction. As our dataset contains categorical

information, we use encoding techniques to convert the categorical feature variables

to numeric features. We evaluate three sets of models for forecasting performance:

(i) multivariate dataset with both transfer directions; (ii) multivariate dataset with

uploads only; (iii) multivariate dataset with downloads only.

4.6.2 Temporal Prediction Model

Based on the dataset analysis considerations presented in Section 4.3.2, we develop

and evaluate multivariate RNN models (both LSTM and GRU-based deep learning

models) to forecast GridFTP transfers. Our multivariate models can make single-

step forecasts (predicting a single future transfer) or multi-step forecasts (predicting

a sequence of future transfers). We build separate models for each dataset described

in Section 4.6.1. As before, our multivariate predictive analytics system chooses

the best model on a per-dataset basis to make useful forecasts. For the single-step

forecast case, to predict the future value Gk,t+1 = g(a1,··· ,a5),k,t+1, we rely on past T

observations, i.e. ∑t
τ=t−T Gk,τ = ∑t

τ=t−T g(a1,··· ,a5),k,t, where (a1, · · · , a5) combined

with t forms the 5-tuple. For the multi-step forecast case, we rely on past T

observations, i.e. ∑t
τ=t−T Gk,τ = ∑t

τ=t−T g(a1,··· ,a5),k,t to predict a sequence of N

future values, ∑N
n=1 Gk,t+n = ∑N

n=1 g(a1,··· ,a5),k,t+n. A similar strategy is used for

the directional transfer datasets. We use a 3-layer deep RNN with 64, 32 and 16

GRU cells for multivariate forecasting. A dropout layer is added to final hidden

layer with a probability of 50% to avoid overfitting. We also note that Adam

optimizer [105] was used with a training batch size of 64, with a linear activation
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function at the output layer. Additional parameters of our multivariate model

is detailed in Table 4.1. With the exception of additional data processing for

multi-step multivariate inputs, the RNN design remains the same.

4.6.3 Performance Evaluation

We compare our deep RNN models with a multi-layer perceptron (MLP) deep

learning model. Our multi-layer perceptron (MLP) predictor consisting of three

dense hidden layer with 64, 32, and 16 fully connected units, a dropout layer added

to the final hidden layer with a probability of 50%, hyperbolic tangent activation

function at the hidden layers and linear activation at the output layer. We compare

the performance of our model with the MLP predictor using three widely used

performance metrics namely: (i) Mean Absolute Error (MAE), (ii) Mean Squared

Error (MSE), and (iii) the coefficient of determination (r2 score). We have also

presented the root mean squared error (RMSE) for convenience. The dataset used

in making the predictions, Gm (1-minute aggregate granularity), was measured

over 7 days and contains 1,004,300 GridFTP transfer connection records from six

user roles described in Section 4.3.1. This dataset was partitioned into a training set

and a validation set in the ratio of 80% and 20%, categorized by user roles. We also

evaluate two types of input scaling, namely min-max scaling (See Equation 4.1)

and standard scaling. Standard scaling on a dataset G is defined as:

Ĝ =
G−Gµ

Gσ
(4.15)

where Gµ and Gσ represents the dataset mean and standard deviations, respec-

tively. Next, we present our deep RNN models’ prediction results and compare

them with the MLP forecasting model.
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4.6.4 Prediction Results and Discussion

We present the prediction performance results for the multivariate datasets Gm

(combined upload and download connections), Dm (downloads only) and Um

(uploads only), each at one-minute aggregate granularity. The models’ predic-

tion performance with min-max scaling and standard scaling are presented in

Figures 4.9 and 4.10, respectively. In both cases, we present the MAE, MSE, RMSE

and r2 scores. Our proposed models, depending on the user role, shows an

improved error performance between 19.94%–32.56%, 14.02%–29.52%, and 7.35%–

16.05% regarding MAE, MSE and RMSE, respectively over the MLP model with

min-max input scaling. Our models also show r2 score improvements between

20.76%–66.49% over the MLP model with min-max input scaling. Further, for

the standard input scaling case, our models, in comparison to the MLP model,

shows an improved error performance between 6.65%–13.85%, 3.86%–6.77%, and

1.95%–3.44% regarding MAE, MSE and RMSE, respectively. It also shows r2 score

improvements between 17.88%–35.94% over the MLP model. The above results

show the effectiveness of our multivariate LSTM and GRU-based deep RNN mod-

els for GridFTP load forecasting. When comparing the multivariate RNN models,

we observe that the LSTM and GRU models’ performance is within 1.5% of each

other for the above performance metrics. In the next section, we demonstrate how

accurate per user role predictions can be effectively used to develop intelligent

load balancing schemes for the LVS [98] cluster.

4.7 Application-aware Load Balancing

Data-intensive science applications, with users interacting with massive amounts of

data, place dynamically varying demands on the network infrastructure. However,
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Figure 4.11: LVS weighted least-connection scheduling load distribution (15 Days).

conventional campus network and supercomputing center architectures, without

a global view of the network, rely on load balancers that are not precise. With

the emergence of SDN, significant research has gone into developing accurate

load balancing methods with better performance than their conventional alter-

natives [88]. However, limited work has been done in developing efficient load

balancers capable of handling massive amounts of data transfers intelligently from

high-throughput distributed computing workflows.

The Linux Virtual Server (LVS) [98] is a high-availability, highly-scalable load
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Figure 4.12: APRIL scheduling load distribution (15 Days).

balancing solution built on a cluster of real servers. The LVS architecture is fully

transparent to end-users/applications and behaves as a single high-performance

virtual server. LVS is a widely used open source load balancing solution in many

supercomputing centers. LVS implements several load balancing schedulers in-

cluding (weighted) round-robin, (weighted) least-connections, source/destination

hashing, and locality-based least-connection schedulers. While these schedulers

perform adequately, they do not provide fine-grained controls for intelligently

balancing connection loads based on application behavior.

The use of application-layer metadata benefits load balancing systems by allow-
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ing them to make intelligent decisions based on application behavior. However,

such application metadata exchange is often limited or nonexistent. In the following,

we propose an intelligent load balancer that exploits both application-awareness

and predictive analytics knowledge to provide fine-grained load balancing controls.

4.7.1 Application-aware Predictive Intelligent Load Balancer (APRIL)

We propose APRIL, an application-aware, predictive, intelligent load balancer.

APRIL intelligently combines application-layer metadata with deep learning pre-

dictive analytics to create customized load balancing policies. Our proposed

approach is highly adaptable to both end-user/application requirements and be-

havior while providing fine-grained controls to the site administrator to prioritize

or isolate desired flows.

We demonstrate an approach that exploits application-awareness and per user

role forecast information to maximize GridFTP server utilization. The proposed

approach, APRIL is described in Algorithm 4.1. First, we define per-server maxi-

mum capacity and weights. The weights are used to decide the preferred order of

load distribution among the servers upper-bounded by their capacity. The weights

are (re)adjusted based on the per user role forecast information periodically to

ensure that the utilization is maximized. We formally define the problem as:

Min.
(

Cn · Sk
Wk

)
, ∀n ∈ N, ∀k ∈ K (4.16)

where, Cn represents the number of connections across K servers Sk, each weighted

by Wk. The weight updates, Wk for each server Sk is defined as:

Wk = ακκSk ×Wk−1 ×
|Cact|
|Cpred|

, ∀k ∈ K, ∀ακ ∈ (0, 1] (4.17)
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Algorithm 4.1 APRIL(G, Sk, αk)

Require: Connection dataset (G), Servers Sk, Capacity threshold αk.
Output: Load distribution.

1: κS = αk · κSk , ∀αSk ∈ (0, 1]
2: Wk = 1, ∀s ∈ Sk
3: for Cact ∈ G do
4: Compute Cpred,t+1 = RNN(Cact, τ), ∀τ ∈ (t− τ, t)
5: while Cact 6= φ do
6: Find s ∈ Sk with the smallest κS
7: for s ∈ Sk do
8: if κS ≤ αk · κSk then
9: s := {Cact,t, Wk}

10: Wk := ακκSk ×Wk−1 × |Cact|
|Cpred|

, ∀k ∈ K
11: break
12: else
13: Find s | κS ≤ αk · κSk
14: end if
15: end for
16: Wk−1 := Wk
17: Cact :=

{
Cact ∪ Cpred

}
18: end while
19: end for

where, κSk is the current server capacity; ακ is the capacity threshold. Wk and Wk−1

are the current and previous weights, respectively. Cact and Cpred represent the total

current and predicted connections, respectively. Each servers’ weights are adjusted

based on the predictions for that observation period. By using application-layer

metadata and per user role forecast information, we can maximize the server

utilization by assigning the appropriate weights for each server. The weights also

ensure that an appropriate number of connections live on each server without

exceeding the capacity (viz. controlled by ακ).
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Figure 4.13: APRIL Deployment.

4.7.2 Results and Discussion

First, we present our experiences with the LVS weighted least-connection (WLC)

scheduling, which is the primary scheduler used in our production U.S. CMS Tier-2

site. Figure 4.11 shows the LVS WLC scheduling heatmaps for the 12 GridFTP

servers (labeled GS1–GS12) in the production network. The Figures 4.11a and

4.11b show the downlink and uplink connection distribution, respectively, when

LVS WLC is used. The corresponding kernel density estimates (KDE) shown in

Figures 4.11c and 4.11c indicate that load is almost equally distributed across all

servers. The distribution performance of our proposed method, APRIL, is shown

in Figure 4.12. From the heatmap shown in Figure 4.12a, we see that APRIL is

better at redistributing loads with an objective of maximizing server utilization.

This is also confirmed by the KDE in Figure 4.12b, which shows the difference

in probability density for servers with increased utilization. Lastly, we show the

resulting daily percentage change effected by APRIL in each server when compared
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to LVS WLC, in Figure 4.12c. We observe that our approach simultaneously

maximizes utilization (up to 11 times increase) in some servers while reducing

utilization significantly in others (a minimum of 0.54 times decrease). The per-

server (maximum and minimum) percentage change averaged over 15 days is also

presented in Figure 4.12d.

Although we have mainly presented the results by comparing our approach

with LVS WLC, we note that other LVS scheduling algorithms were also eval-

uated during our experiments. Specifically, we configured LVS to use three

additional schedulers on the production network namely: round-robin (both pure

and weighted), source hashing, and destination hashing. Other than WLC, these

other schedulers exhibited unstable behavior for opportunistic transfers such as

LIGO workflows. This resulted in frequent dropped connections in the production

network and server loading problems, and therefore we had to revert to WLC for

stable network operation. APRIL provides the ability to accurately forecast the

underlying network flows. Our approach, when combined with network functions

virtualization (NFV) techniques such as service function chaining (SFC) allows site

operators to conveniently impose various network policies. These approaches im-

prove the end-to-end GridFTP transfer performance through multi-path bulk data

movement by employing XSP, GridFTP striping and data-path parallelism. This

allows for optimizations in resource allocation, site-specific policy enforcement,

resource-usage accounting and traffic prioritization.

4.8 APRIL Deployment Strategy

In this section, we discuss the APRIL deployment strategy and integration with

the GridFTP servers. The proposed APRIL deployment strategy is shown in
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Figure 4.13. The deployment process consists of three components, namely:

1. APRIL predictive analytics module

2. Model registry and associated service API endpoints

3. APRIL load balancer and GridFTP integration

4.8.1 APRIL Predictive Analytics Module

The APRIL predictive analytics module consists of machine learning workflows

and includes various tasks associated with data processing, model training and

validation. We partition the machine learning workflows into initialization, data

acquisition, data preprocessing, feature engineering, model training, model selec-

tion, model validation tasks. Numerous deployment strategies are available for

training and serving models in production, such as batch prediction and real-time

prediction across various service options such as web services, serverless functions

(e.g., AWS Lambda, Google Kubernetes Engine), containers and notebooks. To

ensure deployment scalability, portability and modularity, we design each of the

above workflow tasks as microservices. The resulting pipeline employs a persistent

storage volume for marshaling the model artifacts. The pipeline is represented

by a directed acyclic graph (DAG) where each workflow task is related to other

tasks in the pipeline through one or more dependencies. Each task in the pipeline

runs a single job and affects other workflow tasks down the pipeline. Further,

each workflow task in the pipeline is a self-contained unit that provides services to

other tasks in the workflow. The microservice architecture ensures that workflow

tasks can be easily updated, replaced and monitored.

The APRIL predictive analytics module pipeline is shown in Figure 4.13. The

initialization task loads the necessary libraries, environment variables, storage
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paths and initializes the persistent marshal volume for model state management.

The data acquisition task implements a REST API to fetch GridFTP connection

and transfer information from the SNAG [16] application-aware module. SNAG

exposes APIs to allow access to the GridFTP application-layer metadata. This

data is sanitized, preprocessed and fed to a feature engineering task by the data

preprocessor. The feature engineering task ensures that the right features are

selected and appropriately scaled for use by both univariate and multivariate

models. Next, univariate and multivariate RNN and MLP models are separately

trained, and the best models are selected. We evaluate the selected models against

a validation set, and the models are exported and stored for deployments.

4.8.2 Model Registry and API Services

The models exported from the machine learning workflow pipelines are stored and

managed in a model registry. The model registry is responsible for the lifecycle

of the trained models and provides a convenient service to manage and track the

deployed model artifacts. The models are then exposed using web service APIs

(developed in Python Flask). The APRIL load balancing system utilizes the models’

prediction service API endpoint to create load balancing strategies. A single

API service endpoint is provided for each trained model. We use Continuous

deployment (CD) to automate model deployment and service exposure when

newly trained models are available. The CD pipeline is set up with our API service

to load the updated model artifacts and manage the API entry point functions. We

monitor the model registry and the API service performance using deployment

logging and instrumented services. Our instrumented services expose Prometheus

metrics that are aggregated and monitored by the SNAG Elastic cluster monitoring

system (See Section 4.4.3). However, we note that the instrumented services can
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also be monitored separately using systems such as Prometheus and Grafana. We

note that the APRIL machine learning pipeline workflows and the model registry

use separate persistent storage volumes. Next, we present the APRIL load balancer

integration with the GridFTP servers for application-aware and intelligent load

balancing.

4.8.3 APRIL Load Balancer and GridFTP Integration

The SNAG application-aware module updates the Elastic cluster with information

about all current and ongoing GridFTP data transfers in real-time. The APRIL

data acquisition system updates its datasets with the new time series, periodically,

resulting in new RNN models and an updated prediction service. The APRIL

load balancer periodically queries the prediction service APIs to obtain per-user

role GridFTP connection forecasts. The forecast information is used to create load

distribution policies as described in Algorithm 4.1. These policies are used to

adjust the GridFTP servers’ load distribution strategies. The GridFTP server loads

and performance are monitored to ensure smooth operation. The APRIL predictive

analytics module, the model registry and its APIs, the load balancing system and

the GridFTP servers with the SNAG application-awareness form a closed loop

system. Thus, APRIL continuously improves GridFTP server utilization through

application-aware and intelligent load balancing.

4.9 Conclusions

We proposed an application-aware intelligent load balancing system (APRIL)

for high-throughput data-intensive science workflows such as CMS and LIGO.

Our proposed solutions used a real dataset representing 800 million GridFTP
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transfer connections from a major U.S. CMS Tier-2 site. We presented an extensive

analysis of this dataset to identify long-term temporal dependencies between

different user roles and workflow memberships. Using the insights from the

data analysis, we leveraged deep learning techniques for time-series modeling to

develop an application-aware predictive analytics system using long short-term

memory (LSTM) and gated recurrent units (GRU) based recurrent neural network

(RNN). Our deep RNN predictive analytics system accurately forecasts GridFTP

connection loads and performs better than ARIMA or multi-layer perceptron

(MLP) models. We then developed a novel application-aware, predictive and

intelligent load balancer, APRIL, that effectively integrates application metadata

and load forecast information to maximize server utilization. Through extensive

experiments, we demonstrated the effectiveness of APRIL by comparing it with an

existing production Linux Virtual Server (LVS) cluster. Our approach improves

server utilization, on an average, between 0.5–11 times over its LVS counterpart.

Lastly, we presented a deployment strategy for integrating APRIL with the GridFTP

ecosystem. The deployment includes scalable and modular components, including

workflow task separation using the microservices architecture, model registry

and an extensible services API. This approach allows for easy maintenance and

monitoring of the APRIL system. Our future work will focus on developing load

balancing schemes that will consider a broader range of application metadata

parameters.
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Chapter 5

Scalable Application-aware Edge and Generalized Service

Performance Measures for Multi-Cluster Distributed Service

Mesh Architectures

5.1 Introduction

The evolution in cloud computing [107] has led to a fundamental shift in ap-

plication development and service delivery paradigms. To ensure rapid service

instantiation, service agility and flexible deployments in distributed cloud in-

frastructures, operators increasingly rely on cloud-native applications [108] and

microservice architectures [109, 110]. To fully realize the benefits of cloud-native

systems, automated microservice deployment and orchestration systems are neces-

sary (e.g., [111, 112]). Cloud-native architectures disaggregate applications’ control

and data planes, thereby ensuring flexibility, programmability and resilience. A

key challenge in this approach is reliable service-to-service communication across

distributed infrastructures.

The network service mesh (NSM), or “the service mesh,” is an emerging pattern

that enables inter-service communication by providing an addressable infrastruc-

ture layer. Service meshes provide declarative control over network behavior
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through policy-based configuration, management and monitoring frameworks.

Typically, service meshes offer uniform observability, transparent service traf-

fic visibility, granular traffic control, resilience features such as circuit-breaking,

policy-based security and eventually consistent service discovery. While container

orchestrators focus on workload management, scheduling, health monitoring and

discovery, a service mesh focuses on mitigating unmet service-level requirements.

Service meshes ensure secure service-to-service communication and service dis-

covery across distributed infrastructures using a network of sidecar containers or

proxies. These sidecars/proxies form the service mesh data plane and are responsi-

ble for relaying traffic securely between services and client endpoints. Further, they

are combined with ingress (reverse proxy) and egress (forward proxy) gateways to

control inbound and outbound traffic, respectively.

With the emergence of the Internet of Things (IoT) in domains such as smart

homes [113], smart cities [114, 115], health care [116], agriculture [117, 118], etc.,

there is an increasing push towards integrating heterogeneous devices, machines

and digital objects with automation in the virtual world. Integration solutions

for IoT systems frequently communicate with infrastructures in the edge/cloud

for data-analytics, intelligent decision-making, and automation. IoT and data

analytics enable smart agriculture to achieve better operational efficiencies and

improve crop yields. Smart and precision agriculture [119] relies on sensor net-

work deployments for various tasks, including crop health monitoring, process

control and automation. IoT integrates numerous existing technologies, including

(wireless) sensor networks, access technologies, connectivity solutions, computing

and end-user applications. Although IoT empowers agriculture with smart and

intelligent decision-making tools to integrate agricultural implements, knowledge

and services for improved productivity and yield gains, critical challenges exist.
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In contrast to conventional wireless sensor network deployments [120], IoT in

precision agriculture requires advanced capabilities and tight integration between

various technologies such as in-field connectivity, communication devices, aerial or

satellite imaging systems, real-time control systems, data analytics and computing

systems to be effective.

In-field sensors and imaging systems generate large quantities of high-resolution

datasets. Scalable and timely processing of in-field data can provide valuable in-

sights for the specific needs of farmers, crops and soil. However, real-time data

processing to obtain such insights can be challenging due to the lack of high-

performance computing infrastructure, locally. Numerous solutions propose using

cloud resources for data processing and decision-making insights, and they as-

sume the availability of adequate bandwidth and connectivity for high-speed data

movement. Although a high-bandwidth, wide-area network can remedy the weak

or nonexistent coverage in rural areas, it is typically unavailable. Further, the lack

of standardization in how devices and most sensors communicate, both with each

other and with external data acquisition/processing systems, creates heterogeneity

and exacerbates the above problem. Thus, a key challenge is to provide a scalable,

low-cost edge computing solution for environments (e.g., rural areas) characterized by

limited/intermittent connectivity that are typical of agricultural Internet of things

(Ag-IoT) ecosystems.

Numerous research efforts have also focused on the inter-service communica-

tion for networked services, including service composition, service monitoring,

(client-side) load balancing and traffic management. Traffic management methods

for inter-service communication in the literature rely on network proxies, special-

ized packet encapsulation (e.g., network service header (NSH) [121]), or overlay

networks (e.g., Open vSwitch [122], Tungsten Fabric [123]). Solutions requiring
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specific packet headers or overlay networks add complexity to application and

service development as they require modified packet processing libraries or full

overlay network implementations. While service proxies or sidecars typically used

in modern service meshes have the benefits of being platform-agnostic, they result

in increased resource utilization due to the injection of sidecar containers for each

application or service workload. Therefore, inter-service communication (intra- or

inter-cluster) must be optimized across the service mesh as it is critical to ensure

predictable service performance. This requirement motivates the need for a global,

metric-centric measure of service performance between any service-pair in the

service mesh network.

First, we propose ERGO, a scalable edge computing architecture for Ag-IoT

environments. To motivate the problem, we present an exemplary image process-

ing application describing the computational/service requirements of an edge

computing solution in Ag-IoT settings. ERGO works in connectivity-challenged

environments, with limited (possibly periodic) or no wide area network (WAN)

connectivity. Further, due to limited hardware resources available to the edge

computing infrastructure, we design ERGO to be highly composable and scalable

to handle the dynamic needs of Ag-IoT devices. Next, we present the service

infrastructure of our system and develop representational state transfer (REST)

application programming interfaces (APIs) that IoT devices use to interact with

ERGO for various tasks (both management and end-user), including data trans-

fers, decision-insights, service configuration and management. We also present

extensive performance evaluation of our proposed solution. Our findings motivate

the need for developing edge computing systems that can operate efficiently, in-

dependently of cloud-backed assistance for extended durations to serve Ag-IoT

needs.
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Next, we propose a novel generalized service performance measure (GSPM)

to provide a metric-centric view of connected services in a network service mesh.

We build a service mesh network by interconnecting multiple ERGO-like clusters

to develop reliable service-to-service communication solutions across distributed

infrastructures. First, we present a service mesh reference architecture and describe

the inter-cluster service-to-service communication operation. We also present a

comprehensive model for a two-dimensional (2D) network service mesh. We model

two service mesh structures: a simple 2D service mesh and an augmented 2D

service mesh. Next, we present the average service distance (ASD) measure and

analyze its performance for both service mesh structures. While the average service

distance forms a fundamental measure for understanding service performance,

distributed services in real-world deployments often employ performance metrics

that exhibit large variability across clusters. To account for a metric-centric view

of service performance, we develop a generalized service performance measure

(GSPM) by augmenting the average service distance with localized metrics that

are representative of the service/workload performance within a given cluster. To

the best of our knowledge, this is the first effort to develop a metric-centric service

performance measure for connected services in a network service mesh. As the

service/workloads’ performance metrics provide insight and ensure observability

locally, the GSPM is vital to quantify and evaluate the acceptable end-to-end service

performance bounds. Lastly, we propose a GSPM-based dynamic request routing

solution that uses response latency as the metric; we demonstrate its effectiveness

by evaluating it on a real-world service mesh testbed comprising nine clusters.

5.1.1 Contributions and Organization

The main contributions of this chapter are as follows:
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1. ERGO Edge Computing Architecture: We present ERGO, scalable edge comput-

ing architecture for Ag-IoT environments. ERGO provides a RESTful service

infrastructure for both end-user and management tasks. We also present an

extensive performance evaluation of our proposed ERGO system.

2. Average Service Distance Measure (ASD): We present comprehensive network

service mesh models, their analysis, and develop the average service distance

measure for two dominant service mesh structures, namely a simple 2D

service mesh and an augmented service mesh.

3. Generalized Service Performance Measure: We develop a generalized service

performance measure (GSPM) to provide a metric-centric view of service

mesh performance. GSPM relies on localized metrics representative of the

service/workload performance to quantify/evaluate acceptable end-to-end

service performance bounds.

4. Real-world Implementation and Evaluation: We deploy a prototype service

mesh comprising of 9 clusters and demonstrate the effectiveness of GSPM-

based dynamic routing for optimum service placement based on desired

performance metrics.

The chapter is structured as follows: In Section 5.2, we present an overview of

the state-of-art in service mesh architectures, edge computing and the related work;

In Section 5.3, we present the ERGO architecture, operations/service framework,

application instrumentation, autoscaling, and APIs; In Section 5.4, we present an

exemplary ERGO application deployment; Section 5.5 details the prototype cluster

hardware and the experimental setup; We present ERGO performance evaluation

results in Section 5.6; In Section 5.7, we present our reference service mesh ar-
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chitecture and its components; Section 5.8 presents our average service distance

models for two use-cases, namely a simple 2D service mesh and an augmented

service mesh; In Section 5.9, we develop a generalized service performance mea-

sure (GSPM) to provide a metric-centric view of service performance; Section 5.10

details our prototype real-world 9-cluster service mesh implementation; In Sec-

tion 5.11, we develop and evaluate a GSPM-based dynamic routing technique;

Lastly in Section 5.12, we conclude our work.

5.2 Related Work

Service meshes have found applications in numerous domains, including 5G

networks [124], IoT [125], Security [126, 127], load balancing [128], service function

chains [129, 130] and monitoring [131]. A brief review of service mesh architectures

and architecture guidance are available in [132, 133]. These works focus on

developing domain-specific solutions using the service mesh architecture. The

authors in [134] proposed a skewness-aware matrix factorization (SMF) method

to model pairwise RTTs for inter-service communication. They demonstrate that

SMF finds a good balance between low-rank matrix factorization and skewed

distributions. However, the work focuses only on monitoring pairwise RTTs for

performance. Other approaches focusing on latency predictions using the matrix

factorization approach include [135, 136, 137, 138, 139, 140]. Distinct from the

above, our work focuses on developing a generalized service performance measure

(GSPM) that provides a metric-centric view of service performance.

With numerous challenges in agriculture ranging from water scarcity and land

degradation due to the excessive use of chemicals, smart farms and precision

agriculture have become a go-to solution. Ag-IoT has emerged as a way to
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integrate autonomy and precision in this field. Implementing autonomous Ag-IoT

systems has not been easy until recent years. However, with the emergence of

new technologies and hardware, intelligent Ag-IoT design and implementation

are possible. Ag-IoT applications involve several types of data processing, sensor

variety, and diverse functionality leading to integrations in text manipulation and

image/video processing.

Ag-IoT and Analytics: Elijeh et al. [117] provide an overview of data analytics

aspects in Ag-IoT environments. They investigate the main areas that benefit from

data analytics in Ag-IoT, namely: (i) prediction, (ii) storage management, (iii) de-

cision making, (iv) farm management (v) precision farming, and (vi) insurance.

Numerous works have focused on image processing [141, 142, 143]. Though the

application of image processing in Ag-IoT has benefits for automation, deploying

such processing-heavy applications is challenging. Any intelligence deployed has

to be affordable and close to the farm/actuators to minimize communication delay

and costs.

Ag-IoT and Cloud/Edge Computing: Many works have explored the use of

a large sensor base for Ag-IoT. These architectures report sensed data to the

cloud and employ machine learning [144, 145] for data processing. However,

these solutions unreasonably assume broadband coverage allowing farmers to

transmit data to the cloud infrastructure [146]. Furthermore, the latencies involved

in cloud-based data processing is too large for the real-time data processing

needs of Ag-IoT. Many works have explored the integration of edge and cloud

[147, 148, 149] to achieve better latency performance. However, they still require

Internet connectivity to interact with the cloud. Different from the above, our work

focuses on developing an edge-based solution for Ag-IoT environments with WAN

connectivity challenges.
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5.3 ERGO Architecture

Node N
Node 2

Node 1

Pods

Kubelet Proxy

z

API Server

Scheduler

Controller

Master Node

etcd

Edge ComputeIn-Field Devices

S3 S4

IoT API
Gateway

S1

S2

Admin

Load
Balance

Microservice Microservice

ERGO Application API

Operations API

Storage

Monitor

Load BalancerK8s API

ERGO REST API
Device Protocols

(a) ERGO Architecture.

API Requests

Task Queue Message
Broker

Workers Storage

Fr
on

te
nd

Load Balancer

(b) ERGO Microservices.

Figure 5.1: Our ERGO Edge Computing Architecure.

Our proposed ERGO architecture, shown in Figure 5.1 combines container

orchestration with scalable web-services to provide Ag-IoT services over RESTful

APIs. Our proposed architecture is shown in Figure 5.1a. It shares some common

elements with existing edge-cloud solutions such as reconfigurable compute/stor-

age/networking, standardized APIs for application containerization and security

features. However, unlike edge-cloud solutions, our architecture is designed to

work in resource-constrained environments with limited computational, network

bandwidth and power/energy resources. Thus, we focus on seamless operation in

a network with heterogeneous protocols and diverse topologies, while addressing

the challenges of intermittent/disconnected operation. Our architecture is com-

posed of two essential components, namely: (a) an operations framework and (b)

a services framework.

As shown in Figure 5.1, the ERGO operator can manage application/service

deployments through the Kubernetes (K8s) [111] operations APIs and can schedule



139

workloads dynamically. The service framework exposes application APIs to the

in-field devices. In-field devices can interact with ERGO either directly or through

an IoT API aggregation gateway. Typically, application APIs are exposed through

a simple load balancer service. The service framework also provides the ability to

compose multiple applications into a single end-user service. The K8s master node

runs a kubelet instance on each node to configure and manage pod deployments.

5.3.1 ERGO Operations Framework

Our operations framework provides lifecycle management capabilities for various

Ag-IoT computing services. ERGO supports both on-demand and scheduled

services, in either stateful or stateless configurations. The operations framework

relies on an on-premise Kubernetes cluster for container orchestration. All Ag-IoT

services available on ERGO are structured as microservices as shown in Figure 5.1b

to ensure independently deployable components that are highly scalable. ERGO

microservice applications employ Docker as the containerization platform. ERGO

reuses the Kubernetes management and operations APIs while accounting for

disconnected network operations (see Section 5.3.6). ERGO provides advanced

capabilities including (i) layer-2 (L2) load-balancing for both operational and

Ag-IoT services, (ii) dynamic storage provisioning service for automated storage

lifecycle management of all ERGO stateful applications, and (iii) cluster-wide

infrastructure and service monitoring.

5.3.2 ERGO Service Framework

The ERGO service framework exposes services associated with Ag-IoT applications.

Both end-users and IoT devices/sensors access these services. We use a cloud-

native microservice architecture for all Ag-IoT applications and their associated
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services, with each application designed, deployed and managed independently.

Microservices communicate with each other through RESTful protocols provided

by the container orchestration system. We design all edge microservice applications

for reliable operation in disconnected/intermittent internet connectivity scenarios.

We implement service APIs using Flask [150] web server gateway interface (WSGI)

with a MongoDB [151] datastore for managing and caching applications’ stateful

information. ERGO microservices are supported on AMD64, ARM64, ARM/v7,

and i386 architectures.

5.3.3 ERGO Instrumented Applications

ERGO applications are instrumented and integrated with the clusters’ monitoring

system. Application instrumentation allows us to profile the application and

service performance, thus ensuring reliable network operation. The resulting

application/service performance metrics provide runtime intelligence and ensure

adequate resource allocation to the ERGO applications. We incorporate numerous

performance metrics, including per-endpoint resource usage, request rates, loading

information, latencies, and response profiles. A metrics end-point (See Table 5.1) is

also provided to allow access and integration with external systems. All ERGO

instrumented applications integrate with a Prometheus monitoring system to expose

customized application-level metrics. ERGO queries these metrics in real-time

to make autoscaling decisions. Further, we support exporting ERGO application

metrics for integration with external data processing and analytic systems through

secure Prometheus endpoints.
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5.3.4 Autoscaling

ERGO supports autoscaling to ensure predictable performance for compute- or

network-intensive operations. Our autoscaling algorithm employs pre-defined

metrics from instrumented applications to make per-application scaling decisions.

The autoscaling system continuously monitors the desired application perfor-

mance metrics to track user/service loads. It then adjusts the desired number of

application microservice replicas automatically to meet performance goals.

We define a set of M performance metrics, µ(t,i,m), ∀m ∈ M, measured at time

t on instance i. Let the scaling factor α(t,m) represent the number of required

application instances at time t based on the performance measure m. Then, the

number of instances required to ensure that the performance does not drop below a

specified threshold τ(i,m), for each instance i = {1, 2, · · · , N} and measure m ∈ M,

we compute:

α(t+1,m) =

⌈
α(t,m)

∑N
i=1 µ(t,i,m)

∑N
i=1 τ(i,m)

⌉
, ∀m ∈ M (5.1)

In Equation (5.1), α(t+1,m) represents the number of required instances (as measured

by m) to ensure predictable performance. The value α(t+1,m) is computed for each

metric m, and we set the total number of required instances at time t + 1 to the

maximum of the set as shown in (5.2).

At+1 = max{α(t+1,m)}, ∀m ∈ M (5.2)

Thus, At+1, represents the total number of instances required to meet the applica-

tions’ performance needs.
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5.3.5 Task Prioritization and Distributed Queues

ERGO supports task parallelism and prioritization through distributed queues.

Task queues process heterogeneous datasets aggregated by IoT devices or gateways.

We then distribute the aggregated datasets to the appropriate workers using a bro-

kering system (See Figure 5.1b). Using distributed queues and task prioritization

capabilities, we ensure the optimal allocation of ERGO computational resources to

appropriate tasks. Our task distribution and prioritization system is implemented

using Celery, with Redis as the message brokering system. ERGO also features

autoscaling based on task- and queue-state metrics. We can horizontally (# workers)

or vertically (resources per worker) autoscale application microservices using a

wide range of queue/task based performance metrics, including the number of

tasks in the queue, task state (pending, started, running, finished, failed, retry),

queue labels or namespaces, task latency, task runtime and current active workers.

5.3.6 Disconnected/Intermittent Connectivity Operations

While the container orchestration platform allows for dynamic management of

microservices, disconnected/intermittent connectivity creates new challenges that

require special considerations to ensure seamless operation in the event of service

failures. ERGO deploys a local image registry and scheduler service to ensure

the availability of the application images and data to all nodes in the ERGO edge

computing cluster. We also employ an image migration service to update both

cluster management and application images periodically.
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API Methods Description

/device GET, POST, PUT
and DELETE

IoT device management and opera-
tions APIs.

/measurement GET, POST, PUT
and DELETE

APIs for managing device measure-
ments.

/compute GET and POST APIs for managing various comput-
ing functions.

/metrics GET These APIs provide application per-
formance metrics.

Table 5.1: ERGO Ag-IoT API.

5.3.7 Implementation

ERGO implementation supports various services for device interaction, aggregating

measurement information and computing services. Table 5.1 presents an overview

of the ERGO APIs and their associated operations. We divide the APIs into the

following categories:

1. Device API: Manages all IoT/sensor device-related operations such as addi-

tions, deletions and updates.

2. Measurement API: Handles IoT/sensor device measurements and data aggre-

gating.

3. Compute API: Performs the data-specific computational tasks and communi-

cates decisions/outcomes to both end-users and (actuator) devices.

4. Metrics API: Application performance metric (APM) end-point for instru-

mented applications.

We implement our APIs on the Flask WSGI framework. For interactive use, we

also expose the API documentation using Swagger. Further, we employ response
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marshalling features to format, filter and render expected payload responses.

To ensure modularity and to allow for namespace reuse and scalability, we use

namespaces to organize the function-specific APIs. We use Flask Blueprints to

manage API endpoint prefixes.

(a) Original. (b) Felzenszwalb.

(c) SLIC.

Figure 5.2: Image Segementation on ERGO.

5.4 ERGO Ag-IoT Application Deployments

Digital agriculture widely uses imaging as a valuable source of information about

plant health, terrain utilization, water resources, etc. Commonly employed imag-

ing systems acquire RGB, multispectral and thermal infrared images. These

images find applications in 3D mapping, geographic measurements, vegetation

detection, health monitoring, irrigation management and thermography. Existing



145

Figure 5.3: ERGO Prototype Cluster.

cloud-based solutions for agricultural image processing have limited utility in

environments characterized by disconnected/intermittent network connectivity.

We demonstrate the effectiveness of the ERGO edge computing system through

the deployment of an exemplary Ag-IoT application, namely image segmentation

and clustering system. The image segmentation/clustering application represents

a computationally-intensive task subject to offline processing due to the lack of

computing resources locally on the farm.

The ERGO image processing APIs are designed to support various operations

such as image transformations, filtering, and segmentation. To demonstrate

ERGO APIs for processing Ag-IoT images, we implement two image segmentation

techniques that are used by Ag-IoT applications like plant leaf disease detection.

Upon receiving an image from the field, we segment it using the Felzenszwalb

method and the Simple Linear Iterative Clustering (SLIC) method (See Figure 5.2).
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The Felzenszwalb method utilizes a minimum spanning tree (MST) with stopping

criteria to prevent the MST from covering the whole image while progressively

joining components to create segments. SLIC measures the distance between a

pixel and every candidate segment to assign the pixel to a segment. These methods

are compute-heavy and provide suitable use-cases for ERGO.

5.5 Experimental Setup

In this section we present the details of the ERGO edge computing cluster hardware

components and the datasets used in our evaluations.

5.5.1 ERGO Cluster Hardware

We prototype our ERGO edge computing system on a 5-node Raspberry Pi 4 Model

B cluster with quad-core ARM A72 64-bit SoC and 4GB DDR4-3200 SDRAM. The

prototype cluster is shown in Figure 5.3. The cluster configuration comprises

a single master node controlling 4 worker nodes, connected through an 8-port

unmanaged Netgear GS308 GbE switch. We employ an out-of-tree dynamic

network file system (NFS) storage provisioner to manage persistent volumes

automatically.

Table 5.2: Dataset.

Type Parameter Value

Imaging Capture Frequency 10 per second

Image Resolution 1280× 960

Average Image Size 2.5MB

Spectrum RGB



147

5.5.2 Dataset

The imaging dataset is obtained using the autonomous Flex-Ro [152, 153] system.

Flex-Ro (shown in Figure 5.4) captures imaging data by navigating the UNL’s

Field Phenotyping Facility using a differential GPS system. Flex-Ro provides

several sensors to measure phenotypic characteristics of plants, including RGB

sensors, spectrometers to measure reflectance, temperature/humidity sensors,

and ultrasonic sensors to measure height. Flex-Ro captures three images (left,

center and right) per measurement, each with a resolution of 1280× 960 pixels.

Additional dataset details are presented in Table 5.2. ERGO processes the image

data using the image processing APIs and provides valuable insights for in-field

decisions.

Figure 5.4: Flex-Ro System.

5.6 Results and Discussion

We present the performance evaluation results of our ERGO edge computing cluster

in Figures 5.5 and 5.6. We evaluate the performance of ERGO service framework
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by load-testing ERGO applications. We also evaluate the ERGO autoscaling

system and associated performance benefits including reduced application/service

response times and increased peak transaction throughputs. Further, we evaluate

ERGO performance and compare it with traditional infrastructure comprising of a

single monolithic server (labeled “single-node” in the results) with fixed applications.

Our evaluation framework consists of an IoT API gateway node interacting with

the ERGO cluster wirelessly. The gateway node is built on a Raspberry Pi 3B+

module to aggregate API requests from multiple clients. We employ Apache

JMeter [154] for functional load testing and performance evaluation. We present

the APIs’ response times, throughputs, and connection rates for an increasing

number of API requests in Figures 5.5a, 5.5b and 5.5c, respectively.

Our ERGO cluster allocates application/service deployments on 4 worker

nodes, each with 4 cores and 4GiB RAM. Our performance evaluations are two-fold.

First, we evaluate ERGO performance using a single microservice deployment.

Next, we allow the microservice deployment to scale automatically based on

resource utilization metrics. We limit the hardware resources to 250 millicores and

512MiB of RAM per microservice. We then evaluate the performance by sending

a fixed number of concurrent API requests for 30 seconds. We repeat the test by

increasing the number of concurrent API requests to range between 100 to 1,000

per second.

Figures 5.5a−5.5c show ERGO performance with/without scaling. From Fig-

ure 5.5a, we observe that ERGO reduces the average response time (between

48%− 62%, and about 54% on average) in comparison to the single-node infras-

tructure. Further, with autoscaling, we see an increase (between 57%− 108%, and

about 77% on average) in the peak transactions per second, leading to increased

API throughput as shown in Figure 5.5b. Autoscaling performance with varying
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(b) ERGO API throughput.

0 200 400 600 800 1000
85

90

95

100

 Success (Single-Node)
 Error (Single-Node)
 Success (ERGO Scaled)
 Error (ERGO Scaled)

#Concurrent API requests

Su
cc

es
s 

(%
)

0

5

10

15

Er
ro

r (
%

)
(c) Service success/failure rates.

Figure 5.5: Performance evaluation of the Ag-IoT Application APIs.

workloads is also shown in Figure 5.6a. Our autoscaler uses CPU utilization and

the API request rate as the metrics for up/down-scaling the number of microser-

vice deployments. We set a limit of 8 workers for a microservice and a scale-down

delay of 3 minutes. From Figure 5.6a, we see that our autoscaling system reacts

well to the changes in the microservices’ resource utilization. The shaded area in

the figure depicts the events when the service’s resource utilization exceeds 80%.

We note that the residual capacity of 20% acts as a buffer facilitating seamless

operation with the autoscaler spins up new workers. Lastly, we show the ERGO

cluster resource utilization (without application workloads) in Figures 5.6b and

5.6c. We note that our 5-node ERGO cluster, with application deployments, utilizes
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(b) Cluster CPU utilization.
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(c) Cluster memory utilization.

Figure 5.6: ERGO autoscaling and cluster performance.

less than 25% of the clusters’ hardware resources. This includes load-balancing,

dynamic storage provisioning services and cluster monitoring services. Therefore,

about 75%-80% of the cluster resources are available for Ag-IoT application or

service deployments. Thus, ERGO provides scalable and predictable performance

guarantees for an increasing number of services and their processing requirements.
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Figure 5.7: Service Mesh Architecture and Components.
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5.7 Service Mesh Architecture and Modeling

In this section, we introduce a service mesh architecture, its communication model

and present a modeling framework for computing the average service distance

(see Section 5.8) for two essential 2D service mesh models, namely a simple service

mesh model and an augmented service mesh model.

5.7.1 Service Mesh Architecture

We study a service mesh architecture comprising of two planes: (i) a data plane

that performs routing, packet forwarding, load balancing and policy enforcement

tasks, and (ii) a control plane tasked with monitoring, network state/topology

management, service discovery, identity management, policy and configuration.

Figure 5.7 shows the architecture and components of a typical service mesh

system. First, we present an exemplary service mesh topology and its operation

in Figure 5.7a. Each service mesh is composed of numerous services that are

typically separated by trust boundaries (within or across clusters). Service proxies

or sidecar containers transparently intercept the service traffic and are responsible

for routing, monitoring, authorization, authentication and auditing. The service

mesh’s data plane manages both inter-cluster and intra-cluster traffic using ingress

and egress gateways.

Inter-cluster service-to-service communication operation between two clusters

with replicated control planes is shown in Figure 5.7b. The process is as follows:

(i) The ingress gateways control inbound traffic into the service mesh. The ingress

proxy is akin to a reverse proxy and forwards inbound traffic to the appropriate

service. (ii) Service proxies (placed between the service and the application traffic)

ensure traffic observability, control and policy enforcement. The proxies handover
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the traffic to the services. (iii) The service routes the application traffic to the

workloads for processing and the response is forwarded to an egress gateway.

(iv) The egress gateway forwards the traffic to the ingress gateway controller of a

neighboring cluster. Mutual transport layer security (mTLS) is used to encrypt the

traffic between the two clusters. (v) The ingress gateway, like before, forwards the

traffic to the appropriate service. (vi) Service proxies ensure uniform observability

across the clusters. (vii) The egress gateway sends the response back to the

client/application. While we assume that the clusters provide the services, we note

that using a similar approach we can integrate services provided by application

monoliths, virtual machines (VM) and baremetal workloads.

5.7.2 Service Mesh Models

Typically, service mesh architectures span multiple clusters that are represented by

a mesh structure. Due to its topological regularity and network interconnects be-

tween cluster pairs, mesh structures are a logical choice for modeling service mesh

architectures. While we can measure the global behavior of a service mesh routing

algorithm using the service mesh diameter (the greatest distance between any two

services in the service mesh) as a metric, its topology dependence, unsurprisingly,

results in unrealistic lower bounds for delays during mesh traversals. Specifically,

bandwidth limitations, traffic variation, service performance and alternative routes

can result in higher delay bounds for a given service mesh architecture. The

services’ and cluster workloads’ dynamic behavior motivates the need for a global

quantitative measure of performance between any service-pair in the service mesh

network. In the following, we present the average service distance (ASD) as a

global measure of the distance between two arbitrary services in a service mesh

with a fixed structure.
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Figure 5.8: Service Mesh Structures.

5.8 Average Service Distance Measure

5.8.1 Preliminaries

To compute the average service distance (ASD) metric, we model two-dimensional

mesh structures, as shown in Figure 5.8. We begin with an x × y service mesh,

x, y ≥ 1, ∀x, y ∈ Z. We denote the mesh structure by M(x, y). Each node in the

mesh represents a single cluster ci,j, composed of a set of services sk
i,j, ∀k ∈ K.

Each service sk
i,j is associated with a set of workloads wk,l

i,j , ∀l ∈ L. Without loss of

generality, each cluster ci,j is identified by its coordinates (i, j) in the x× y service

mesh network M(x, y), with 1 ≤ i ≤ x, 1 ≤ j ≤ y. Each service sk
i,j in M(x, y)

generates an arbitrary number of service requests at time t. For modeling, we

assume that the service request generation follows a Poisson distribution.

Definition 5.1: Given a service mesh M(x, y) of size x× y, let ci1,j1 and ci2,j2 denote two

arbitrary clusters in M(x, y). We define a simple path as a path between two arbitrary

clusters traversed only through a set of distinct clusters. We denote by PM(ci1,j1 , ci2,j2)
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and LM(ci1,j1 , ci2,j2) the number of such paths between ci1,j1 and ci2,j2 , and the sum total of

the path lengths in M(x, y), respectively. Then, the average service distance between the

clusters ci1,j1 and ci2,j2 in M(x, y) is given by:

AM(ci1,j1 , ci2,j2) =
LM(ci1,j1 , ci2,j2)

PM(ci1,j1 , ci2,j2)
(5.3)

where LM(ci1,j1 , ci2,j2) = ∑N
n=0 n · Pn

M(ci1,j1 , ci2,j2) for N paths between ci1,j1 and ci2,j2 .

Table 5.3: Service Mesh Model Notations.

Parameters Description

M(x, y) A 2D service mesh with x, y ≥ 1, ∀x, y ∈ Z, of size x× y.
Ms(x, y) A simple 2D service mesh with no diagonal links.
Ma(x, y) An augmented 2D x× y mesh with diagonal links.

ci,j A cluster located at (i, j) in the service mesh M(x, y).
sk

i,j A service in the cluster ci,j.

wk,l
i,j Workloads associated with the kth service sk

i,j of a cluster ci,j.

PM(ci1,j1 , ci2,j2) Total number of simple paths between the cluster pair at (i1, j1)
and (i2, j2).

LM(ci1,j1 , ci2,j2) The sum total of the path lengths.
AM(ci1,j1 , ci2,j2) The average service distance (ASD) between the clusters at

(i1, j1) and (i2, j2).
δ(ci1,j1 , ci2,j2) The effective distance between the clusters at (i1, j1) and (i2, j2).
TMa(i, j) The transformed average service distance.

T(i, j) The transformed average service distance transition matrix for
the cluster ci,j at (i, j).

pi,j;t A performance metric measured at time t on a service sk
i,j in

cluster ci,j ∈ M(x, y)
PM(x, y; t) A x× y matrix with pi,j;t for each cluster in Ma(x, y), ∀t ∈ T.
G(ci,j; t) The generalized service performance measure for ci,j at time t.
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5.8.2 Two-dimensional Service Mesh Model

A simple two-dimensional service mesh, denoted by Ms(x, y), where x, y ≥ 1, is

shown in Figure 5.8a. Each cluster ci,j connects to four clusters in this model with

the exception of the 2(x + y− 2) boundary clusters that connect to two or three

clusters. A service mesh routing algorithm will use the l1 norm (or Manhattan

distance) to route a service request between a cluster at (i1, j1) to (i2, j2).

Definition 5.2: Let ci1,j1 and ci2,j2 represent two clusters located at (i1, j1) and (i2, j2),

respectively. Then, we define the effective distance δ(ci1,j1 , ci2,j2) to be |i2 − i1|+ |j2 − j1|.

Letting 1 ≤ i1 ≤ i2 ≤ x and 1 ≤ j1 ≤ j2 ≤ y, we have δ(ci1,j1 , ci2,j2) = (i2 − i1) + (j2 −

j1).

From Figure 5.8a, we make the following observations. Consider a service

request from from (i1, j1) to (i2, j2). An efficient service routing approach will

reduce the effective distance by a 1 with each traversal on reaching an intermediate

cluster. As an example, consider a request from (i1, j1) to (i2, j2), 1 ≤ i1 ≤ i2 ≤

x, 1 ≤ j1 ≤ j2 ≤ y. With each traversal, an effective routing algorithm will choose

links to the right/bottom of the cluster at (i1, j1). Further, the chosen paths are also

simple and shortest paths. Thus, it follows that the effective path length between

c1,1 and ci,j is i + j− 2.

Lemma 5.1: Let Ms(x, y) be a simple two-dimensional service mesh of size x× y. Then,

AMs(c1,1, cx,y) = x + y− 2 (5.4)

While the above analysis assumes that the source of the service request is

originating from c1,1, Lemma 5.1 holds for any arbitrary source. We can apply a

linear coordinate transform to any source to obtain a cluster coordinate pair of
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the form in (5.4). While the average service distance for a simple mesh Ms(x, y)

is trivial, we present a generalized approach for more sophisticated service mesh

topologies by extending a combinatorial process developed in [155].

Let PMs(c1,1, cx,y) and LMs(c1,1, cx,y) denote the total effective paths between the

clusters c1,1 and cx,y, and the sum of those path lengths, respectively. Without

loss of generality, as the source is fixed at (1, 1), we represent the parameters by

the destination, i.e., (x, y). Using the above analysis (similar to Lemma 5.1), the

recurrence relations for PMs(x, y) immediately follow:

PMs(x, y) =



1, x ≥ 1, y = 1,

1, x = 1, y ≥ 1

PMs(x− 1, y)

+PMs(x, y− 1), otherwise

(5.5)

When either x, y = 1, Ms(x, y) transforms into a one-dimensional array, and

therefore we have a single path from the service request source to any destination

service. For x, y ≥ 2, consider the case when the request from c1,1 is forwarded to

either c1,2 or c2,1. Using a linear transformation, we observe that the effective path

from clusters c1,2 to cx,y or c2,1 to cx,y is identical to the paths from c1,1 to cx,y−1 or

c1,1 to cx−1,y, respectively. Further, for each path from c1,2 to cx,y, the path between

c1,1 to c1,2 contributes a single path to LMs(x, y). Thus, it follows that the first

path contributes LMs(x, y− 1) to LMs(x, y). The recurrence relation for LMs(x, y) is

therefore given by:
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LMs(x, y) =



x− 1, x ≥ 1, y = 1,

y− 1, x = 1, y ≥ 1

LMs(x− 1, y)

+LMs(x, y− 1) + PMs(x, y), otherwise

(5.6)

Using generating functions [156, 155] to solve the above recurrence relations,

we have:

AMs(x, y) =
LMs(x, y)
PMs(x, y)

=
(x + y− 2)(x+y−2

y−1 )

(x+y−2
y−1 )

(5.7)

Therefore, the ASD between the clusters c1,1 and cx,y is:

AMs(x, y) = x + y− 2 (5.8)

Thus, Eqn. (5.8) confirms Lemma 5.1. Figures 5.9a, 5.9b and 5.9c show the

variation of PMs(x, y), LMs(x, y) and AMs(x, y) for 1 ≤ x, y ≤ 20, respectively. From

the figures, we observe that both PMs(x, y) and LMs(x, y) grow exponentially with

increasing service mesh size.

5.8.3 Augmented Two-dimensional Service Mesh Model

An augmented two-dimensional mesh, denoted by Ma(x, y) is shown in Figure 5.8b.

In addition to the paths in Ms(x, y), Ma(x, y) also includes diagonal links. As

the diameter of the service mesh Ms(x, y) increases linearly with an increase in x

and y, the diagonal links in Ma(x, y) serve to reduce the network diameter. These

diagonal links consequently lead to a reduction in the average service distance as

shown next.
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(a) #Paths (PMs(x, y)) (b) Sum of path lengths (LMs(x, y))

(c) Avg. Service Distance (AMs(x, y)) (d) #Paths (PMa(x, y))

(e) Sum of path lengths (LMa(x, y)) (f) Avg. Service Distance (AMa(x, y))

Figure 5.9: Simple and augmented service mesh performance.

Consider the effective path between two clusters c1,1 and ci,j. From Figure 5.8b,

it is evident that such a path from c1,1 to cx,y will traverse the major diagonal to
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a cluster at (min{i, j}, min{i, j}) and then reach (i, j) directly. Further, we note

that the length of the path is max{i, j} − 1. Thus, the augmented service mesh

(Ma(x, y)) network diameter reduces to max{x, y} − 1. When, x = y, the number

of links in Ms(x, y) and Ma(x, y) are 2x2 − 2x and 4x2 − 6n + 2, respectively. In

comparison to Ms(x, y), Ma(x, y) has numerous effective paths from (1, 1) to (x, y),

with the length of the longest path (without diagonal links) equal to x + y− 2.

Therefore, the effective path length for Ma(x, y) is between max{x, y} − 1 and

x + y− 2.

We denote the total effective paths between the clusters c1,1 and cx,y, and the

sum of those path lengths by PMa(c1,1, cx,y) and LMa(c1,1, cx,y), respectively. While

most effective paths between c1,1 and ci,j are not the shortest paths, the major

diagonal paths connecting the two clusters may be affected by factors such as

reduced residual capacity, congestion and bandwidth limitations. Therefore the

recurrence relations for the Ma(x, y) case are as follows:

PMa(x, y) =



1, x ≥ 1, y = 1,

1, x = 1, y ≥ 1

PMa(x− 1, y)

+PMa(x, y− 1)

+PMa(x− 1, y− 1), otherwise

(5.9)
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LMa(x, y) =



x− 1, x ≥ 1, y = 1,

y− 1, x = 1, y ≥ 1

LMa(x− 1, y)

+LMa(x, y− 1)

+LMa(x− 1, y− 1)

+PMa(x, y), otherwise

(5.10)

As an example, we evaluate PMa(x, y) and LMa(x, y) with x = 3, y = 2. Using Eqns.

(5.9) and (5.10), we have:

PMa(3, 2) = PMa(2, 2) + PMa(3, 1) + PMa(2, 1)

= PMa(2, 2) + 2

= PMa(1, 2) + PMa(2, 1) + PMa(1, 1) + 2 = 5

(5.11)

Thus, we have five effective paths with δc1,1,c3,2 ≤ 3, namely {(1,1),(2,2),(3,2)},

{(1,1),(2,1),(3,2)}, {(1,1),(1,2),(2,2),(3,2)}, {(1,1),(2,1),(3,1),(3,2)}, and {(1,1),(2,1),(2,2),(3,2)}.

LMa(3, 2) = LMa(2, 2) + LMa(3, 1) + LMa(2, 1)

+ PMa(3, 2)

= 5 + 2 + 1 + 5 = 13

(5.12)

Therefore, the ASD for Ma(3, 2) is AMa(x, y) = 13/5 = 2.6.

Using generating functions described in [156] to solve the recurrence relations

in Eqns. (5.9) and (5.10) for x, y ≥ 2, [155] has shown that a generalized version is

given by:

PMa(x, y) =
y−1

∑
k=0

(
x− 1

k

)(
x + y− k− 2

x− 1

)
(5.13)
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For x, y ≥ 2, we also have:

LMa(x, y) = (x− 1)
(

x− 1
y− 1

)
+

y−2

∑
k=0

[(
x− 1

k

)
(

x + y− k− 2
x

)
x(x + y− k− 2)

x− k− 1

]
(5.14)

Definition 5.3: A function 2F1(x, y; z; k) is a hypergeometric function if it can be ex-

pressed in the form:

2F1(x, y; k; z) =
∞

∑
n=0

(x)n(y)n

(k)n

zn

n!
(5.15)

Solving the Eqns. (5.13) and (5.14) analytically using Mathematica [157], we

get:

PMa(x, y) =
(

x + y− 2
x− 1

)
F1(x, y) (5.16)

where F1(x, y) = 2F1(1− x, 1− y;−x− y + 2;−1). The first term in (5.14) can be

written as:

(x− 1)
(

x− 1
y− 1

)
=

(x− 1)Γ(x)
Γ(y)Γ(x− y + 1)

(5.17)

where Γ(·) is the gamma function. With x > y ≥ 2, the analysis in [155] shows

that Eqn. (5.14) can be reduced to:

LMa(x, y) =
(

x + y− 2
x− 1

)
[(x + y− 2)F1(x, y)

− (x− 1)(y− 1)
x + y− 2

F2(x, y)
]

(5.18)

where F2(x, y) = 2F1(2− y; 2− x;−x− y + 3;−1).

Theorem 5.2: For an augmented service mesh Ma(x, y) of size x× y and x, y ≥ 1, the



163

average service distance AMa(1, 1) = 0. Further,

AMa(x, y) = (x + y− 2)−
(
(x− 1)(y− 1)

x + y− 2
F2(x, y)
F1(x, y)

)
,

∀x ≥ y ≥ 1, x, y 6= 1
(5.19)

Lastly, when y > x ≥ 1,AMa(x, y) = AMa(y, x).

Proof. With x, y = 1, the result AMa(x, y) = 1 follows from Eqns. (5.9) and (5.10).

When m ≥ n ≥ 1, m, n 6= 1, we compute the average service distance defined in

Eqn. (5.3) using Eqns. (5.13) and (5.14). For e.g., with y = 3, we see that:

F1(x, 3) = 2F1(1− x,−2;−x− 1;−1)

=
2
(
2x2 − 2x + 1

)
x(x + 1)

(5.20)

Also,

F2(x, 3) = 2F1(−1; 2− x;−x;−1) =
2(x− 1)

x
(5.21)

From Eqns. (5.13) and (5.14), it follows that

AMa(x, 3) = (x + 1)−
(

2(x− 1)
x + 1

F2(x, y)
F1(x, y)

)
=

2x3 − 2x2 + 3x− 1
2x2 − 2x + 1

(5.22)

From Eqns. (5.9) and (5.10), when x ≥ 1, y = 1 we have AMa(x, y) = x − 1. To

verify the last part of Theorem 5.2, we set x = 1 in (5.22). Thus, for y > x ≥ 1, and

x = 1, y = 3, we have AMa(1, 3) = AMa(3, 1) = 2. �

Figures 5.9d, 5.9e and 5.9f show the variation of PMa(x, y), LMa(x, y) and

AMa(x, y) for 1 ≤ x, y ≤ 20, respectively. From the figures, we observe that both
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Figure 5.10: Augmented service mesh performance and ASD comparison.

PMa(x, y) and LMa(x, y) grow exponentially with increasing service mesh size,

albeit at a significantly faster rate than the simple two-dimensional service mesh.

However, the presence of diagonal links in the service mesh leads to a modest

decrease in the corresponding average service distance. The growth of F1(x, y) and

F2(x, y) for 1 ≤ x, y ≤ 20 are also shown in Figures 5.10a and 5.10b, respectively.

Lastly, in Figure 5.10c, we present the comparison of ASD for both service mesh

types, when x = y.
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Corollary 5.2.1: When x = y, from Eqn. (5.19) it follows that

AMa(x, x) = (2x− 2)−
(
(x− 1)

2
F2(x, x)
F1(x, x)

)
,

∀x ≥ 1, x 6= 1
(5.23)

5.8.4 Average Service Distance Complexity

From Eqn. (5.8), it follows that the complexity of AMs(x, y) for service mesh

Ms(x, y) is O(n). The run-time complexity of the Ma(x, y) service mesh to com-

pute the average service distance (AMa(x, y)) is shown in Figure 5.11. We show

the AMa(x, y) computation time and space complexities in Figures 5.11a and

5.11b, respectively. Using non-linear regression to compute the best-fit approx-

imations of the theoretical asymptotic run-time, we find that the time complex-

ity is O(n2 ln(n)). The best-fit approximation for AMa(x, y), 1 ≤ x, y ≤ 500 is

≈ 2.2515× 10−7n2 ln(n). We also present the best-fit approximations for O(ln(n)),

O(n ln(n)) and O(n3 ln(n)), which are 0.02309 ln(n), 8.6693× 10−5n ln(n), and

5.2143× 10−10n3 ln(n), respectively, for comparison. In the following section, we

develop a generalized service performance measure to reason over service mesh

performance based on desired performance metrics.

5.9 Generalized Service Performance Measure

While the average service distance, AM(x, y), provides a fundamental measure

for understanding service performance across clusters, distributing services in

real-world deployments often employ performance metrics that exhibit large

variability across clusters. In Section 5.7, we assume a unit distance measure

between services (i.e. sk
i,j and sk

i±1,j±1) in adjacent clusters (i.e. ci,j and ci±1,j±1) to
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Figure 5.11: AMa(x, y) Computational Complexity.

compute the average service distance for a given service mesh. However, service

meshes in practice rely on numerous telemetry elements such as log information,

performance metrics and distributed tracing to understand service behavior across

clusters. Telemetry information can be context-aware (e.g., logs) or devoid of

context due to personally identifiable information (PII) or unbounded cardinality.

Uniform observability of services using various performance attributes is critical

to ensure service resilience across diverse infrastructures. Performance studies

have led to the development of numerous methods to identify critical metrics

representative of system behavior. Examples include the USE method [158], four

golden signals [159] and the RED method [160]. These methods rely on metrics

such as utilization, error rates, saturation, latency, request rates and traffic to

observe and monitor service performance.

We develop a generalized service performance measure (GSPM) to provide

a metric(s)-based view of connected services in a network service mesh. We

augment the average service distance using localized metrics representative of the

service/workload performance within a given cluster. While the service/workload
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performance metrics provide insight and ensure observability locally, the GSPM

is vital to quantify and evaluate the acceptable end-to-end service performance

upper bounds.

Definition 5.1: Let ci1,j1 and ci2,j2 denote a pair of arbitrary clusters in Ma(x, y) located

at (i1, j1) and (i2, j2), respectively. We define the transformed average service distance as:

TMa(i1, j1) =AMa(ci1,j1 , ci2,j2)

=AMa(c1,1, ct1,t2)
(5.24)

where t1 = |i2− i1|+ 1 and t2 = |j2− j1|+ 1. Further, w.l.o.g, we note thatAMa(c1,1, ct1,t2) ≡

AMa(t1, t2).

For each cluster, we can compute a transition matrix by using the transformation

in Eqn. (5.24). Let T(i, j) denote the transformed average service distance transition

matrix for the cluster ci,j at (i, j). Next, we integrate localized performance metrics

with the above transition matrix to develop a generalized service performance

measure for each cluster ci,j ∈ Ma(x, y).

Definition 5.2: Let pi,j;t denote a performance metric measured at time t on a service sk
i,j

in a cluster ci,j ∈ Ma(x, y). We denote by PM(x, y; t), x, y ∈ Z, ∀t ∈ T, a x× y matrix

with pi,j;t for each cluster in Ma(x, y). Then, we define the generalized service performance

measure (GSPM) for the cluster ci,j as:

G(ci,j; t) = PM(i, j; t) ◦ TMa(i, j; t) (5.25)

The product PM(i, j; t) ◦ TMa(i, j; t) is the Hadamard product between the two
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matrices at time t. Therefore, we have:

PM(i, j; t)◦TMa(i, j; t) = (pi,j;t · Ti,j;t)

=


p1,1;t · T1,1;t · · · p1,j;t · T1,j;t

... . . . ...

pi,1;t · Ti,1;t · · · pi,j;t · Ti,j;t

 ,

∀1 ≤ i ≤ x, 1 ≤ j ≤ y, ∀t ∈ T

(5.26)

Service meshes emphasize uniform observability, and therefore, we can use numer-

ous performance metrics to compute the generalized service performance measure

(GSPM). Typically, most cluster-wide metrics aggregators provide (hardware) re-

source usage information; however, they are limited to CPU, memory and storage

resources. Apart from cluster-wide aggregated metrics, we can employ numerous

other service performance indicators, including (i) service mesh metrics such as

count and duration of requests, request/response size, TCP bytes sent/received,

and TCP connections established/closed. (ii) application-specific metrics from

the services’ associated workloads, and (iii) a complex aggregated combination

of the above. Unlike the average service distance, our proposed approach can

easily integrate any of the above metrics to understand the distributed service

performance across clusters better.

We present an algorithm to compute the aggregated generalized service perfor-

mance measure (GSPM) in Algorithm 5.1. The algorithm considers performance

metrics associated with a service (sk
i,j ∈ ci,j) or a set of workloads (wk,l

i,j ∈ sk
i,j)

associated with a service for a given cluster ci,j at time t. For each service in a

cluster, we first compute the transformed average service distance transition matrix

(i.e., TMa(i, j; t)). We then evaluate the GSPM matrix, G(ci,j; t), for the cluster ci,j at
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time t using (5.25). G(ci,j; t) provides a realistic measure of the expected service

performance if we forward a request from the cluster ci,j to any other cluster

ci′,j′ , i′ 6= i, j′ 6= j in the service mesh. In the above case, we assume a single unified

metric associated with each service sk
i,j.

Alternatively, we can also employ metrics associated with the services’ work-

loads instead of a metric associated with it. However, to ensure scalability, work-

loads are typically load-balanced behind a given service. Thus, we have to ag-

gregate the corresponding metrics from the services’ workloads and combine

them to a single representative value. In our proposed algorithm, we denote this

aggregation function by H(·). We note that an operator can develop numerous

aggregation strategies based on application- and service-specific needs. Examples

include strategies based on descriptive statistics or inference (including predictive)

models.

Lemma 5.1: For a given metric pi,j;t measured at time t on a service (sk
i,j) or aggregated

from a set of workloads ({wk,l
i,j }) in cluster ci,j, the product (pi,j;t · Ti,j;t) represents a

bounded measure of the metric between two clusters.

From Eqn. (5.24), we observe that the transformed average service distance, Ti,j;t,

measures the average distance between the source cluster at (i, j) and any other

cluster in the service mesh. While the average service distance (ASD) indicates

the normalized average distance between a pair of services (across clusters in

the mesh), it does not account for localized performance characteristics. The

product pi,j;t · Ti,j;t, therefore, represents a bounded measure for a given service-

pair weighted by the metric pi,j;t at time t.

Theorem 5.2: Let PM(x, y; t), x, y ∈ Z, ∀t ∈ T denote a x × y matrix with the metric

pi,j;t measured at each cluster in Ma(x, y). Then, the mesh-wide service performance
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Algorithm 5.1 AggregatedGSPM(M(x, y),PM,AM(x, y)

Require: Service Mesh M(x, y), Performance metric PM, Transformed ASD
TM(x, y).

Output: Generalized Service Performance Matrix.
1: for all ci,j ∈ Ma(x, y) do
2: for all sk

i,j ∈ ci,j do
3: if pi,j;t 7→ sk

i,j then
4: TMa(i, j; t) = AMa(ci,j, ci′,j′), i′ 6= i, j′ 6= j
5: TMa(x, y; t)← (TMa(i, j; t))
6: G(ci,j; t) = PM(x, y; t) ◦ TMa(x, y; t)
7: break
8: else if pi,j;t 7→ wk,l

i,j then

9: for all wk,l
i,j ∈ sk

i,j do

10: PM(x, y; t)← H({pk,l
i,j;t}, wk,l

i,j )
11: go to 4

12: end for
13: end if
14: end for
15: end for

as indicated by the metric pi,j;t is upper-bounded by the generalized service performance

measure (GSPM), G(ci,j; t), for the cluster ci,j.

Proof. From Lemma 5.1, it follows that the Hadamard product PM(x, y; t) ◦TMa(x, y; t)

represents a bounded measure for the service mesh weighted by the metric pi,j;t at

time t. Thus, G(ci,j; t) is the mesh-wide upper bound for service performance as

seen from the (source) cluster ci,j. Further, as TMa(x, y; t) is weighted by PM(x, y; t)

with ci,j as the source, and therefore, the service performance cannot exceed

G(ci,j; t) for predictable performance. �
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Figure 5.12: Prototype service mesh and GSPM-based dynamic routing perfor-
mance.
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5.10 Implementation

We build a prototype service mesh consisting of nine Kubernetes (K8s) [111, 161]

clusters in a 3× 3 configuration. Each of these nine K8s clusters are composed of

three nodes with a single master node and two worker nodes. We deploy these

clusters on an on-premise testbed that employs Dell PowerEdge R740 servers,

with each server comprising of two Intel Xeon Gold 6126 processors (24 cores, 48

threads total), 192 GiB of RAM and 240 GiB SSDs. Each cluster in the service mesh

is composed of 24 vCPUs and 24 GiB of RAM (8 vCPUs/8 GiB RAM per node).

Further, we deploy an out-of-tree network file system (NFS) dynamic storage

provisioner for managing persistent volumes on each cluster. Our service mesh

infrastructure is built using the Istio [162] open source service mesh platform. Our

service mesh employs an Istio multicluster deployment with replicated control

planes. Services across clusters are connected using ingress/egress gateways that

achieve intercluster service-to-service communications.

5.11 GSPM-based Dynamic Request Routing

Service meshes inherently provide the ability to gradually shift/transfer traf-

fic from one service to another based on specified routing rules. Service-level

properties of service mesh infrastructures enable service resiliency through the

control/configuration of timeouts, circuit-breakers and retries. Further, weighed

routing capabilities ensure ease of management for tasks such as blue/green de-

ployments, staged/canary deployments, load balancing and A/B testing. While

most service mesh framework implementations feature fundamental routing ca-

pabilities [163, 164] based on L4/L7 headers and service/application versioning,

they rely on static configuration for routing traffic. In this section, we present a
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GSPM-based routing technique to route incoming requests between intercluster

services dynamically.

On each cluster of the service mesh described in Section 5.10, we deploy

an identical directed acyclic service graph comprising four services: an API

endpoint (SA), a message broker (SB), a task queue (SC) and a worker (SD). These

four services form a service chain: SA → SB → SC → SD. Further, using a

routing policy, we configure the ingress/egress gateways to enable service request

forwarding across clusters. For example, we can forward a request to the service

SB from SA on c1,1 to SB on c2,3. Natively, the service mesh supports service routing

through a static, per-route weight assignment. For example, we can route 30%,

30%, and 40% of SA traffic to c1,2, c2,1 and c3,2. However, such an assignment fails

to consider the current service performance at the corresponding cluster. Next,

we demonstrate the effectiveness of GSPM in overcoming this problem to ensure

optimum service routing based on current service performance metrics.

5.11.1 Results and Discussion

In Figure 5.12, we present the prototype service mesh performance. For the

baseline, we evaluate service performance directly, i.e., without sidecars/proxies.

Figures 5.12a and 5.12b show the service latency performance, with and without

proxy/sidecars, respectively. We use a 1KB payload with 16 connections running

1000 queries/second (QPS) for a duration of 4 minutes. From the results, we

observe that the service mesh proxies/sidecars contribute about 1− 4ms of latency

per service-pair. We also show the service mesh latency for service-to-service

communication with and without mTLS encryption in Figures 5.12c and 5.12d,

respectively. We vary the number of connections from 2 to 64 using 1KB payloads

at 1000QPS for 4 minutes. At the 90th percentile, for 16 connections, we observe
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that the service mesh infrastructure adds latencies of 4.52 ms and 3.01 ms over the

baseline for unencrypted and mTLS (preferred) connections, respectively.

In Figure 5.12e, we present the normalized GSPM computed using response

latency as the metric (pi,j;t). A comparison with the average service distance for

the 3× 3 mesh with c1,1 as the source is also presented in Figure 5.12f. Note

that unlike GSPM or ASD, existing naive implementations reroutes traffic only

during failures or circuit breaking. As shown in Figure 5.12f, ASD policy relies on

intercluster latency only for choosing the cluster to forward service traffic. However,

unlike ASD, our proposed GSPM approach takes localized service performance as

indicated by a desired metric (response latency in our case) into account. Thus,

our GSPM-based dynamic routing takes a holistic approach to service routing.

By computing G(ci,j; t) periodically, the routing policy ensures optimum service

routing based on the desired performance metric. From the comparison, GSPM is

12.01− 80.74% better than ASD as an indicator of service performance measure.

while ASD requires manual update. Lastly, periodic GSPM updates result in, on

average, over 42.8% improvement of the accuracy of service routing performance

over ASD.

5.12 Conclusions

In this work, we present ERGO, an edge computing architecture for Ag-IoT envi-

ronments characterized by limited/intermittent internet connectivity. We develop

edge-enabled Ag-IoT services that are modular, composable, and highly scalable

in heterogeneous, resource-constrained environments. In particular, we show the

challenges and opportunities arising from edge deployments in environments that

cannot inherently offload data processing to cloud-based systems. By providing
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localized, real-time decision-making tools, edge solutions can augment highly

instrumented Ag-IoT environments. Our exemplary applications and extensive

performance evaluations demonstrate the efficacy of our proposed architecture

and outline numerous opportunities for developing optimized edge solutions

for connectivity challenged Ag-IoT environments. In comparison to traditional

architectures, on average, our proposed ERGO solution improves peak transaction

throughput by over 77% and reduces response latencies by over 54%.

Further, we present a generalized service performance measure (GSPM) for

multi-cluster distributed service mesh architectures. First, we presented the av-

erage service distance (ASD) measure to develop a fundamental framework for

measuring service performance. We also presented a comprehensive analysis

of two 2D service mesh structures: a simple service mesh and an augmented

service mesh. Based on the shortcomings of ASD, we developed the general-

ized service performance measure (GSPM) to provide a metric-centric view of

service performance by taking localized metrics that represent the service/work-

load performance, into account. We also demonstrate the effectiveness of our

proposed GSPM-based dynamic routing approach by evaluating it on a real-world

service mesh testbed and show that it performs, on average, 42.8% better than the

alternative.
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Chapter 6

Conclusions

In this dissertation, we investigate application-aware and software defined net-

working (SDN) solutions for network management problems, including service

differentiation, quality of service (QoS), monitoring, service placement, policy

enforcement, load balancing, network data analytics and service networking. First,

we developed SNAG, an SDN-managed network architecture for data-intensive

science workflows. SNAG is an exemplary solution for at-scale GridFTP traffic clas-

sification, monitoring, and management. Our solution demonstrates a cross-layer

collaborative approach and integrates SDN with application-layer intelligence. Our

application-aware approach effectively creates traffic classification and monitoring

views that are not achievable using traditional layering approaches. Further, by

exploiting application metadata at the network-layer, intelligent network man-

agement decisions are possible. At HCC, SNAG application-awareness played

a crucial role in helping us understand the resource utilization patterns of op-

portunistic users (e.g. LIGO). Using application-awareness, network operators

and resource owners can gain valuable insights and account for resources during

opportunistic sharing. While SNAG focused on data-intensive science workflows

and GridFTP integration, we can easily extend our application-aware architecture

to securely expose metadata from other applications.
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In Chapter 2, we also present an application-aware SDN approach to network

services differentiation and active network management. Using this approach,

we proposed a policy-based framework for network services differentiation. We

demonstrated an application-driven mechanism for creating workflow-specific

resource queues. Using application-aware network management principles, site

operators can optimize resource allocation and fine-tune network performance to

suit end-user application requirements. We also present two strategies, resource

isolated queues (RIQ) and resource switched queues (RSQ), for applying QoS to

CMS and LIGO flows.

In Chapter 3, we presented an integer linear programming formulation of

the service function chain (SFC) mapping problem for multi-data center network

topology. To reduce the SFC mapping costs across different data centers, we

proposed a novel application-aware flow reduction (AAFR) algorithm. We present

a thorough study of the SFC mapping problem by developing comprehensive

models for both virtual network function (VNF) placemnt and SFC mapping

across data centers. Through extensive performance evaluations of our proposed

approach, we evaluate the performance of our AAFR algorithm and quantify the

of impacts the application-aware flow processing on the number of SFCs and the

SFC length on mapping costs. We also compare capacitated/uncapacitated cost

gains, and finally investigate balancing flow-to-SFC mappings across data centers.

Extensive performance evaluations show that our proposed AAFR algorithm

achieves a maximum cost-gain of 70% for the capacitated SFC mapping case.

Further, for the uncapacitated case, our AAFR algorithm provides an additional

4.1% cost-gain over its capacitated-SFC counterpart. Thus, the AAFR algorithm

developed using application-aware principles is better at balancing flow-to-SFC

mappings and avoids SFC loading problems.
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In Chapter 4, we propose an application-aware intelligent load balancing

system (APRIL) for high-throughput data-intensive science workflows such as

CMS and LIGO. Using application-awareness, we obtained a dataset representing

800 million GridFTP transfer connections from a major U.S. CMS Tier-2 site. We

presented an extensive analysis of this dataset to identify long-term temporal

dependencies between different user roles and workflow memberships. Using the

insights from the data analysis, we leveraged deep learning techniques for time-

series modeling to develop an application-aware predictive analytics system. We

developed long short-term memory (LSTM) and gated recurrent units (GRU) based

recurrent neural network (RNN) forecasting models. Our deep RNN predictive

analytics system accurately forecasts GridFTP connection loads and performs better

than other statistical/machine learning models such as ARIMA and multi-layer

perceptrons (MLP).

We also developed a novel application-aware, predictive and intelligent load

balancer, APRIL, that effectively integrates application metadata and load forecast

information to maximize server utilization. Through extensive experiments, we

demonstrated the effectiveness of APRIL by comparing it with an existing produc-

tion Linux Virtual Server (LVS) cluster. Lastly, we presented a deployment strategy

for integrating APRIL with the GridFTP ecosystem. The deployment includes

scalable and modular components, including workflow task separation using the

microservices architecture, model registry and an extensible services API. This

approach allows for easy maintenance and monitoring of the APRIL system.

In Chapter 5, we present ERGO, a scalable edge computing architecture for

Ag-IoT environments characterized by limited/intermittent internet connectivity.

ERGO provides modular, composable, and highly scalable edge-enabled services

for heterogeneous, resource-constrained Ag-IoT environments. Using ERGO, we
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present the challenges and opportunities arising from edge deployments in envi-

ronments that cannot inherently offload data processing to cloud-based systems.

Thus, ERGO provides localized, real-time decision-making tools to augment highly

instrumented Ag-IoT environments. We demonstrate the effectiveness of ERGO

through extensive performance evaluations and exemplary applications. When

compared to traditional architectures, on average, our proposed ERGO solution

improves peak transaction throughput by over 77% and reduces response latencies

by over 54%.

Lastly, we present a generalized service performance measure (GSPM) for

multi-cluster distributed service mesh architectures. To develop a fundamental

framework for measuring service performance, we first present the average service

distance (ASD) measure. Next, we present a comprehensive performance analysis

of two 2D service mesh structures: a simple service mesh and an augmented

service mesh. We also developed the generalized service performance measure

(GSPM) to provide a metric-centric view of service performance by taking localized

metrics representing the service/workload performance. We also demonstrate

the effectiveness of our proposed GSPM-based dynamic routing approach by

evaluating it on a real-world service mesh testbed and show that it performs, on

average, 42.8% better than the alternative.

While our application-awareness solutions have focused primarily on the

GridFTP data transfers, data-intensive science and service mesh architectures,

it can be easily extended to other application domains. Further, our approach

can benefit other network management tasks including routing/forwarding, traf-

fic analysis/redirection, resource provisioning, and QoS. Our future work will

focus on creating adaptive and intelligent strategies for automated policy en-

forcement, threat-intelligence management, traffic engineering and heterogeneous
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service-based architectures. We will develop and apply our application-awareness

principles to other application domains, including cloud-native networking, net-

work service mesh architectures and network security. We will also focus on

developing novel resource allocation and resource management schemes that will

consider a broader range of application metadata parameters.
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tinuous Service Monitoring Framework Using DevOps and Service Mesh in a

Complementary Manner,” in Service-Oriented Computing, S. Yangui, I. Bouas-

sida Rodriguez, K. Drira, and Z. Tari, Eds. Cham: Springer International

Publishing, 2019, pp. 151–168. 5.2

[132] W. Li, Y. Lemieux, J. Gao, Z. Zhao, and Y. Han, “Service Mesh: Challenges,

State of the Art, and Future Research Opportunities,” in 2019 IEEE Interna-

tional Conference on Service-Oriented System Engineering (SOSE), Apr. 2019, pp.

122–1225, iSSN: 2642-6587. 5.2

[133] A. El Malki and U. Zdun, “Guiding Architectural Decision Making on

Service Mesh Based Microservice Architectures,” in Software Architecture,

T. Bures, L. Duchien, and P. Inverardi, Eds. Cham: Springer International

Publishing, 2019, pp. 3–19. 5.2

[134] Y. Fu, D. Li, P. Barlet-Ros, C. Huang, Z. Huang, S. Shen, and H. Su, “A

Skewness-Aware Matrix Factorization Approach for Mesh-Structured Cloud

Services,” IEEE/ACM Transactions on Networking, vol. 27, no. 4, pp. 1598–1611,

Aug. 2019, conference Name: IEEE/ACM Transactions on Networking. 5.2

[135] Y. Mao, L. K. Saul, and J. M. Smith, “IDES: An Internet Distance Estimation

Service for Large Networks,” IEEE Journal on Selected Areas in Communications,



201

vol. 24, no. 12, pp. 2273–2284, Dec. 2006, conference Name: IEEE Journal on

Selected Areas in Communications. 5.2

[136] J. Zhu, P. He, Z. Zheng, and M. R. Lyu, “Online QoS Prediction for Runtime

Service Adaptation via Adaptive Matrix Factorization,” IEEE Transactions

on Parallel and Distributed Systems, vol. 28, no. 10, pp. 2911–2924, Oct. 2017,

conference Name: IEEE Transactions on Parallel and Distributed Systems.

5.2

[137] R. Zhu, D. Niu, and Z. Li, “Robust web service recommendation via quantile

matrix factorization,” in IEEE INFOCOM 2017 - IEEE Conference on Computer

Communications, May 2017, pp. 1–9. 5.2

[138] Y. Fu and X. Xiaoping, “Self-Stabilized Distributed Network Distance Predic-

tion,” IEEE/ACM Transactions on Networking, vol. 25, no. 1, pp. 451–464, Feb.

2017, conference Name: IEEE/ACM Transactions on Networking. 5.2

[139] B. Liu, D. Niu, Z. Li, and H. V. Zhao, “Network latency prediction for

personal devices: Distance-feature decomposition from 3D sampling,” in

2015 IEEE Conference on Computer Communications (INFOCOM), Apr. 2015,

pp. 307–315, iSSN: 0743-166X. 5.2

[140] Y. Liao, W. Du, P. Geurts, and G. Leduc, “DMFSGD: a decentralized

matrix factorization algorithm for network distance prediction,” IEEE/ACM

Transactions on Networking, vol. 21, no. 5, pp. 1511–1524, Oct. 2013. [Online].

Available: https://doi.org/10.1109/TNET.2012.2228881 5.2

[141] A. A. Bharate and M. S. Shirdhonkar, “A review on plant disease detec-

tion using image processing,” in 2017 International Conference on Intelligent

Sustainable Systems (ICISS), December 2017, pp. 103–109. 5.2

https://doi.org/10.1109/TNET.2012.2228881


202

[142] M. Jhuria, A. Kumar, and R. Borse, “Image processing for smart farming:

Detection of disease and fruit grading,” in 2013 IEEE Second International

Conference on Image Information Processing (ICIIP-2013), Dec. 2013, pp. 521–526.

5.2

[143] D. Shadrin, A. Menshchikov, D. Ermilov, and A. Somov, “Designing Future

Precision Agriculture: Detection of Seeds Germination Using Artificial Intel-

ligence on a Low-Power Embedded System,” IEEE Sensors Journal, vol. 19,

no. 23, pp. 11 573–11 582, Dec. 2019. 5.2

[144] A. Khattab, A. Abdelgawad, and K. Yelmarthi, “Design and implementation

of a cloud-based IoT scheme for precision agriculture,” in 2016 28th Intl.

Conf. on Microelectronics (ICM), Dec. 2016, pp. 201–204. 5.2

[145] M. S. Mekala and P. Viswanathan, “A Survey: Smart agriculture IoT with

cloud computing,” in 2017 International conference on Microelectronic Devices,

Circuits and Systems (ICMDCS), Aug. 2017, pp. 1–7. 5.2

[146] Federal Communications Commission (FCC), “2018 broadband deployment

report,” February 2018, [Online; posted 02-February-2018]. 5.2

[147] T. A. A. Ali, V. Choksi, and M. B. Potdar, “Precision Agriculture Monitoring

System Using Green Internet of Things (G-IoT),” in 2018 2nd International

Conference on Trends in Electronics and Informatics (ICOEI), May 2018, pp.

481–487. 5.2

[148] A. Javed, K. Heljanko, A. Buda, and K. Främling, “CEFIoT: A fault-tolerant

IoT architecture for edge and cloud,” in 2018 IEEE 4th World Forum on Internet

of Things (WF-IoT), Feb. 2018, pp. 813–818. 5.2



203

[149] X. Chen, Q. Shi, L. Yang, and J. Xu, “ThriftyEdge: Resource-Efficient Edge

Computing for Intelligent IoT Applications,” IEEE Network, vol. 32, no. 1, pp.

61–65, Jan. 2018. 5.2

[150] “Flask (A Python Microframework),” https://flask.palletsprojects.com/,

accessed: 2021-04-12. 5.3.2

[151] “MongoDB,” https://www.mongodb.com/, accessed: 2021-04-12. 5.3.2

[152] J. P. Werner, “Flex-Ro: Design, Implementation, and Control of Subassem-

blies for an Agricultural Robotic Platform,” Master’s thesis, University of

Nebraska-Lincoln, Lincoln, NE, USA, 2016. 5.5.2

[153] J. N. Murman, “Flex-Ro: A Robotic High Throughput Field Phenotyping

System,” Master’s thesis, University of Nebraska-Lincoln, Lincoln, NE, USA,

2019. 5.5.2

[154] “Apache JMeter,” https://jmeter.apache.org/, accessed: 2021-04-12. 5.6

[155] Z. Shen, “The calculation of average distance in mesh structures,” Computers

& Mathematics with Applications, vol. 44, no. 10, pp. 1379–1402, Nov. 2002.

[Online]. Available: http://www.sciencedirect.com/science/article/pii/

S089812210200264X 5.8.2, 5.8.2, 5.8.3, 5.8.3

[156] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A

Foundation for Computer Science, 2nd ed. USA: Addison-Wesley Longman

Publishing Co., Inc., 1994. 5.8.2, 5.8.3

[157] W. R. Inc., “Mathematica, Version 12.1,” champaign, IL, 2020. [Online].

Available: https://www.wolfram.com/mathematica 5.8.3

https://flask.palletsprojects.com/
https://www.mongodb.com/
https://jmeter.apache.org/
http://www.sciencedirect.com/science/article/pii/S089812210200264X
http://www.sciencedirect.com/science/article/pii/S089812210200264X
https://www.wolfram.com/mathematica


204

[158] B. Gregg, “Thinking Methodically about Performance,” Queue, vol. 10,

no. 12, pp. 40–51, Dec. 2012. [Online]. Available: https://doi.org/10.1145/

2405116.2413037 5.9

[159] B. Beyer, C. Jones, J. Petoff, and N. R. Murphy, Site Reliability Engineering:

How Google Runs Production Systems, 1st ed. O’Reilly Media, Inc., 2016. 5.9

[160] T. Wilkie, “The RED Method: key metrics for microservices architecture,”

library Catalog: www.weave.works. [Online]. Available: https://www.

weave.works 5.9

[161] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg, Omega,

and Kubernetes,” Queue, vol. 14, no. 1, p. 70–93, Jan. 2016. 5.10

[162] “Istio,” Available: https://istio.io/, Last accessed on August 09, 2020. 5.10

[163] K. Indrasiri and P. Siriwardena, “Service Mesh,” in Microservices for the

Enterprise: Designing, Developing, and Deploying. Berkeley, CA: Apress, 2018,

pp. 263–292. 5.11

[164] M. Klein, “Lyft’s Envoy: Experiences Operating a Large Service Mesh,” in

SRECon17 Americas. San Francisco, CA: USENIX Association, Mar. 2017.

5.11

https://doi.org/10.1145/2405116.2413037
https://doi.org/10.1145/2405116.2413037
https://www.weave.works
https://www.weave.works
https://istio.io/


ProQuest Number: 

INFORMATION TO ALL USERS 
The quality and completeness of this reproduction is dependent on the quality  

and completeness of the copy made available to ProQuest. 

Distributed by ProQuest LLC (        ). 
Copyright of the Dissertation is held by the Author unless otherwise noted. 

This work may be used in accordance with the terms of the Creative Commons license 
or other rights statement, as indicated in the copyright statement or in the metadata  

associated with this work. Unless otherwise specified in the copyright statement  
or the metadata, all rights are reserved by the copyright holder. 

This work is protected against unauthorized copying under Title 17, 
United States Code and other applicable copyright laws. 

Microform Edition where available © ProQuest LLC. No reproduction or digitization  
of the Microform Edition is authorized without permission of ProQuest LLC. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, MI 48106 - 1346 USA 

28646963

2021


	List of Figures
	List of Tables
	Introduction
	Data-Intensive Science
	Exemplary Data-Intensive Science Architectures
	Application-Awareness
	Secure and Reliable Flow Identification using Application-Awareness
	Large-scale Data Transfer Monitoring, Management and Service Differentiation
	An SDN/NFV Approach to Optimized Service Chain Mapping and Securing Data-Intensive Science Transfers
	Predictive and Intelligent Load Balancing using Application-Awareness
	Optimized Service Delivery in Distributed Service Mesh Architectures

	Contributions
	Organization of the Dissertation

	SNAG: SDN-managed Network Architecture for GridFTP transfers using Application-Awareness
	Introduction
	Contributions and Organization

	Motivations and Related Work
	Network Management for Data-Intensive Science Transfers
	SDN-enabled Network Management and Monitoring

	Application-Aware SDN
	SNAG Architecture
	Implementation

	Experimental Setup and Testbed
	Integration with GridFTP
	Network Testbed Topology
	Elastic Cluster Data Store

	Use Case 1: Traffic Classification using SNAG
	Deployment
	Results and Discussion

	Use Case 2: Network Monitoring using SNAG
	Monitoring Views and Trend Analysis
	Forecasting and Prediction
	Results and Discussion

	Use Case 3: Differentiated Network Services and Active Network Management using SNAG
	Application-aware traffic prioritization
	Policy-driven service differentiation

	Differentiated Services Solution Approach
	Policy Framework
	Policy Engine
	Specification Language
	Actions and Strategies

	Differentiated Services Solution Architecture using SNAG
	Algorithm Design for Service Differentiation
	Implementation
	Resource Isolated Queues (RIQ) 
	Resource Switched Queues (RSQ) 

	Results and Discussion

	Recommendations for Building Application-aware Architectures
	Conclusions and Future Work

	Optimized Service Chain Mapping and Reduced Flow Processing with Application-Awareness
	Introduction
	Virtualized Services Model and Network Scenario
	Virtualized Services Model
	Network Scenario

	VNF Placement Problem
	Problem Formulation: VNF-LP
	Decision Variables
	Objective
	Constraints for VNF Placement
	Constraints for flow-to-VNF mapping
	Flow conservation constraints


	SFC Mapping Problem
	Assumptions
	Service Function Chaining Model
	Network Model
	Problem Formulation: SFC-LP
	Decision Variables
	Objective
	Constraints for SFC placement
	Constraints for Resource Capacity
	Constraints for Flow-to-SFC mapping
	Constraints for Flow Conservation


	Application-Aware Flow Reduction (AAFR)
	Experimental Study
	Data Center and Network Setup
	Results and Discussion

	Related Work
	Conclusions

	APRIL: An Application-Aware, Predictive and Intelligent Load Balancing Solution for Data-Intensive Science
	Introduction
	Contributions and Organization

	Related Work
	Data Analysis and Modeling
	Dataset
	Exploratory Analysis

	Experimental Testbed
	Application-aware SDN and GridFTP Integration
	Network Testbed Topology
	Data Management System

	Univariate Load Modeling and Predictive Analytics
	Overview
	Temporal Prediction Model
	Performance Evaluation
	Prediction Results and Discussion

	Multivariate Load Modeling and Predictive Analytics
	Overview
	Temporal Prediction Model
	Performance Evaluation
	Prediction Results and Discussion

	Application-aware Load Balancing
	Application-aware Predictive Intelligent Load Balancer (APRIL)
	Results and Discussion

	APRIL Deployment Strategy
	APRIL Predictive Analytics Module
	Model Registry and API Services
	APRIL Load Balancer and GridFTP Integration

	Conclusions

	Scalable Application-aware Edge and Generalized Service Performance Measures for Multi-Cluster Distributed Service Mesh Architectures
	Introduction
	Contributions and Organization

	Related Work
	ERGO Architecture
	ERGO Operations Framework
	ERGO Service Framework
	ERGO Instrumented Applications
	Autoscaling
	Task Prioritization and Distributed Queues
	Disconnected/Intermittent Connectivity Operations
	Implementation

	ERGO Ag-IoT Application Deployments
	Experimental Setup
	ERGO Cluster Hardware
	Dataset

	Results and Discussion
	Service Mesh Architecture and Modeling
	Service Mesh Architecture
	Service Mesh Models

	Average Service Distance Measure
	Preliminaries
	Two-dimensional Service Mesh Model
	Augmented Two-dimensional Service Mesh Model
	Average Service Distance Complexity

	Generalized Service Performance Measure
	Implementation
	GSPM-based Dynamic Request Routing
	Results and Discussion

	Conclusions

	Conclusions
	Bibliography

