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Abstract—As machine learning workloads become computa-
tionally demanding, there is an increased focus on distributed
machine learning to train and deploy models across multiple
machines in a cloud-native cluster. However, optimizing a ma-
chine learning model’s lifecycle to facilitate efficient resource
utilization is still an active area of research. The approach
typically involves a manual effort to partition the models into
distinct layers and decide how to store these distinct layers on a
distributed computing framework. However, distributing distinct
layers across nodes can induce a network latency bottleneck in the
machine learning pipeline. Further, the above process becomes
more inefficient as models become increasingly complex. In this
paper, we present a heuristic-based approach to distributed
model training. Further, we analyze the resource utilization
metrics from a sample machine learning pipeline deployed on
a KubeFlow MLOps framework testbed.

Index Terms—Cloud-native Infrastructure, MLOps, Resource
Allocation.

I. INTRODUCTION

Machine learning involves learning trends, interpolating
data patterns, and using this information to analyze previously
unseen data. Deep learning is the branch of machine learning
that refers to the use and study of neural networks for
learning these patterns. Neural networks have shown massive
performance improvements in various domains, from speech
recognition to synthesis, from decision-making for self-driving
cars to gaming (e.g., chess [1] and starcraft [2]). Training
neural networks are computationally expensive and typically
requires access to specialized hardware such as graphics pro-
cessing units (GPU), tensor processing units (TPU) and field
programmable gate arrays (FPGA) to improve performance.
Cloud has become the go-to solution for obtaining on-demand
hardware to train these models. The rise of cloud service
providers, advances in container technologies and orchestra-
tion systems such as Kubernetes has made managing cloud
infrastructure and compute resources easier. Containerization
enables packaging an application with its dependencies and
orchestration platforms to help manage containers effectively.
Machine learning operations (MLOps) is a new field at the in-
tersection of machine learning and DevOps. It aims to simplify
the process of aggregating data, training and deploying models
by leveraging core DevOps principles. MLOps platforms,
such as KubeFlow [3], facilitate end-to-end machine learning
pipeline development, promote the re-usability of independent
components and enable engineers to focus on critical tasks.

Recent trends have shown that the scale of deep learning
models is increasing. Language models, for example, increased

from 94 million parameters in the Elmo model to 1.5 billion
in GPT2 and 175 billion in GPT-3. Assuming each parameter
takes 4 bytes, storing 175 billion parameters requires approx-
imately 700 GB. Thus, the model size is over 10x that of a
regular GPUs’ memory (e.g., 48 GB for an Nvidia Quadro
RTX 8000). The GPT-3 model requires about 3.14 × 1023

FLOPS during the training process, and basic calculations
indicate that it would cost approximately 4.6 million USD
to complete the entire training process [4]. We also observe
a similar trend with large models used for other tasks. As
machine learning (ML) models become more significant and
extensive in scale, there is a need to develop efficient tech-
niques to train these models, as it is impossible to fit the entire
model on a single machine. Parallel or distributed machine
learning deals with algorithms that distribute the models onto
multiple machines (or GPUs) and combine the results to return
a final trained model. However, utilizing infrastructure as a
service (IaaS) hardware is expensive from a resource and cost
perspective. As ML models become bigger, allocating optimal
resources to these models is a critical problem. This paper
explores various approaches for choosing the optimal resource
for model training, model splitting, and fitting distinct parts
onto separate machines to minimize resource wastage without
adding significant overheads.

We study existing methods for distributed training of ma-
chine learning models in cloud-native infrastructures and de-
velop a preliminary mathematical basis for resource alloca-
tion problems. We present a brief overview of the existing
literature, identify how to model resource allocation as an
optimization problem, and discuss machine learning-based
approaches suitable for cloud-native deployments. While ma-
chine learning pipelines can have multiple steps, from data
acquisition to preprocessing, training and post-processing, we
focus on efficient resource allocation for each pipeline stage
based on their computational needs.

This paper is organized as follows: Section II introduces
the context for the need for cloud-native resource allocation
and presents the related works; In Section III, we present
current approaches to model parallelism; Section IV presents
a heuristic-based approach to allocating resources to an ML
pipeline in a cloud-native infrastructure. We also present
preliminary results on the resource requirements for a sample
ML pipeline deployed on an MLOps framework; We conclude
our work and discuss the future directions in Section V.
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II. RELATED WORK

Recently, machine learning operations (MLOps) in the cloud
have gained significant attention, and numerous research ef-
forts focus on optimizing machine learning (ML) pipelines for
cloud deployments. While MLOps focuses on end-to-end life-
cycle management of ML workflows by providing scalability
and efficiency benefits, numerous challenges exist [5], [6]. Ma-
chine learning pipelines for various tasks have benefited many
application domains, including the internet of things (IoT) [7],
data-intensive science [8], and genetics [9]. Numerous efforts
have explored the use of machine learning frameworks for
resource allocation in various computing paradigms, including
vehicular networks [10], network functions virtualization [11],
optimization [12], [13], and cloud assistance [14].

A critical challenge across computing paradigms (e.g., on-
premise, cloud, edge, fog, hybrid, and high-performance com-
puting) is ensuring optimal resource allocation for diverse
ML pipelines. Sub-optimal resource allocation for large ML
pipeline deployments that use cloud-native MLOps frame-
works may increase operational costs, impact overall perfor-
mance and reduce deployment agility. Further, as artificial
intelligence (AI) and ML model designs specialize in perform-
ing particular tasks, dynamic changes to the model, pipeline,
or data artifacts may impose high costs on the compute
infrastructure.

Existing solutions optimize an ML pipeline’s resource allo-
cation through manual tuning or worst-case resource require-
ment estimation. However, these approaches are inefficient and
fail to exploit the resource scalability, observability and opti-
mization benefits of cloud-native infrastructure for MLOps.
In contrast to the above works, our paper explores various
model parallelism approaches suitable for optimizing cloud-
native resource allocation for ML pipeline deployments. In the
following, we provide a brief overview of model parallelism
approaches and how we can employ them to make intelligent
resource allocation decisions in cloud-native infrastructures.

III. DISTRIBUTED MODEL TRAINING APPROACHES

Parallelism1 in machine learning, alternatively, distributed
machine learning, typically refers to achieving better (or faster)
performance by making the best use of all available resources
in a cloud-native setting. The above process typically involves
multiple machines splitting the computation optimally and
returning a final trained model. For example, if the model is
larger than the memory capacity of a GPU, we can split the
model into multiple components and place each layer on a dif-
ferent GPU. This approach, the most naive model parallelism
approach, comes with certain drawbacks. First, in splitting
models, the number of GPUs increases with communication
overheads. This overhead can become a bottleneck if the GPUs
are on different cluster nodes. Thus, the gradients calculated
during back-propagation must travel back from the final layers
to the first layer, which may result in increased latencies.

1Parallelism, in this paper, refers to model parallelism and not at the
individual operator level.

Next, the decision to split layers employs a manual approach.
Splitting models requires knowledge of the underlying deep
learning model architecture and the available hardware. Lastly,
another drawback of this approach is that it leads to the
hardware idle for extended periods, commonly referred to as
the GPU idling problem. While a particular GPU performs the
necessary computation, all other provisioned machines are idle
until the operation terminates. Therefore, this approach results
in inefficient usage of computing resources. To address this
problem, GPipe [15] proposed the idea of pipeline parallelism
and worked around the GPU idling problem by splitting the
data into smaller micro-batches, allowing all machines to
compute concurrently. Although not optimal, it decreased the
overall GPU idle time (which can be seen as the area of
the bubble in Figure 1) compared to naive model parallelism.
Naturally, this also adds another hyper-parameter to the model,
i.e., the number of micro-batches that result from splitting the
incoming batch.

Fig. 1: Reduction of idle time with GPipe [15].

Another approach toward attaining parallelism involves
splitting the data into smaller batches. Each GPU maintains a
replica of the entire model but operates on different parts of the
dataset. At the end of each backward pass, gradients from each
GPU are accumulated and used to update each replica. This
architecture needs a shared hardware pool that stores gradient
information. We refer to this shared pool as the parameter
server. The gradient update is performed synchronously and
asynchronously, making it an efficient approach when the
training data is extensive. However, these distributed train-
ing techniques have some drawbacks, and complex models
may use a combination of data and model parallelization
approaches to attain optimal parallelism.

ZeRO [16] data parallelism is another variation of data
parallelism. The model on each machine stores only a slice of
the model information rather than the complete model param-
eters, optimizers and gradient. This leads to lower storage re-
quirements for the models and, therefore, fits more significant
batch sizes per machine. During training, all machines are syn-
chronized to share parameter and gradient information. Fully
sharded data parallel (FSDP) [17] is another advancement
in ZeRO that shards the models’ parameters across multiple
GPUs while also optionally offloading a part of the training
to the CPU.

IV. RESOURCE ALLOCATION FOR CLOUD MLOPS

Resource allocation refers to selecting the optimal comput-
ing resources (e.g., GPUs) in the cloud and making suitable
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model and data splitting decisions. Directed computational
graphs internally represent deep learning models, where the
vertices represent operations, and edges indicate data flow.
Hence, splitting a machine learning model is effectively similar
to breaking the edges in its computational graph, so each
independent component of the final graph can fit into a single
machine. The vertices we choose to break will still constitute
inter-machine communications since they connect two compo-
nents stored in different GPUs. Thus, if the GPUs belong to
different physical machines, it can lead to additional network
latency. Moreover, we need to minimize GPU memory wastage
to ensure optimal usage of available resources. At a very
high level, resource allocation problems can be divided into
two categories based on how this allocation is performed.
Static resource allocation refers to the manual allocation of
computing resources. This approach involves understanding
the training model and available data and allocating the
appropriate computing resources. After resource allocation, we
decide on the mechanism to split the model. For instance, we
may want to fit more layers into the GPU with more significant
memory. Since this involves manual effort, resource allocation
and splitting decisions become complex with large, parallel,
and non-linear deep learning models. To mitigate this manual
effort, we explore a heuristic-based approach that uses the
knowledge of the model and available hardware to decide the
best method to split the computation graph to attain model
parallelism. Next, we present a heuristic-based approach to
optimize resource allocations in cloud-native infrastructures.

A. Heuristic-based Resource Allocation for MLOps

Let G = {V,E}, be a random computational graph that
completely represents our deep learning model, with V de-
noting the vertices or nodes of this graph and E indicating
the connection between different nodes. We denote the set of
available GPUs as H = {H0, H1, H2, ...,Hk−1}. Each Hi,
with i ∈ {0, ..., k − 1}, has physical memory specifications
defined in S = {S0, S1, S2, ..., Sk−1}. Note that there are
no restrictions on the above computational graph. The graphs
may be nonlinear and have skip connections or recurrent
nodes. Similarly, H may store the memory specifications of
all available GPUs.

The heuristic-based resource allocation problem essentially
reduces to the problem of splitting the graph G into a
finite number of sub-graphs GN . Thus, we have GN =
{g0, g1, g2...., gN−1} by breaking a fixed number of edges
Ej = {e0, e1, ..., ej−1} and splitting the original graph G into
smaller graphs such that GN = g0∪g1∪...∪gN−1. Further, we
add the edges Ej between different GPUs that connect these
sub-graphs GN . We also define a function Lat to represent the
final latency function. The latency introduced by this operation
is defined as Lat = f(G,Ej). For a simple linear model, Lat
returns the sum of all latencies introduced by breaking these
edges in E. For a parallel graph model, the latency does not
necessarily have to be the sum of individual latencies.

Our heuristic-based strategy proposes optimizing two val-
ues, namely (i) the overall latency Lat, and (ii) the available

idle GPU space while training the model, as we do not want
to allocate more resources than needed. Naturally, one way
to minimize network latency Lat is by reducing the number
of broken edges. However, this approach leads to memory
overflow for large models.

The final optimization will be a function of overall network
latency Lat and idle GPU memory. Since Lat and idle memory
have common parameters, we cannot optimize each parameter
independently. Thus, we can treat the objective function as
a regular Loss function in machine learning that must be
minimized. We use Loss to represent our loss function, and
our objective function is given by:

argmin
Ej∈E

[Loss(Lat(G,Ej),

N∑
i=0

Si − used spacei)] (1)

for N machines, where si represents the physical specifica-
tions of the ith machine, and used spacei is the amount of
RAM storage utilized by the model.

B. Preliminary Results

We employ a two-node Kubernetes cluster, each with 32 GB
of RAM and an Intel i7 quad-core CPU for our MLOps
framework deployment. Our testbed cluster runs KubeFlow
to automate ML workflows and uses a monitoring frame-
work to obtain accurate performance metrics at each pipeline
stage. We use Prometheus as our metric server and Grafana
for visualization. To test resource utilization, we deploy a
sample pipeline consisting of four components: data loading,
preprocessing, training and model inference. We focus our
evaluations on the preprocessing and training pods, as they
used most computing resources. Since each component runs
as an independent pod in the KubeFlow pipeline, we extract
accurate metrics of each pod using our monitoring system. In
our sample pipeline deployment, we train a digit classification
model using the Convolutional Neural Network (CNN) model
built with TensorFlow.

During preprocessing, we drop an axis dimension from our
data and reshape each vector into a square matrix. We then
normalize the data by dividing each value by 255. Finally, we
split our entire dataset into train and test sets, with a ratio of
9:1. In the training stage, we use a CNN consisting of three
convolution layers with dropout layers between them, followed
by a dense layer with softmax activation. The final output is
a probability distribution of each possible label. The pipeline
is generated using KubeFlow Python Software Development
Kit (SDK) and uploaded to KubeFlow framework UI.

During our experiments, we noticed that CPU utilization
peaked at approximately 1% for a short period during the pre-
processing stage. However, the CPU utilization reached 23%
during the training phase, as shown in Figure 2a. Similarly,
memory usage during the preprocessing stage is considerably
lower (at 0.24 GB) in comparison to the corresponding peak
memory usage for the training phase (about 8.2 GB), as shown
in Figure 2b. To understand the memory needs of our MLOps
platform and associated dependencies, we measured memory
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(a) ML pipeline CPU utilization.
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(b) ML pipeline memory usage.
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Fig. 2: Cluster and ML pipeline resource utilization.

usage over seven days. The KubeFlow namespace used 13.9
GB of memory, while its dependencies needed 3.6 GB of
memory on average. The cluster memory consumption is much
higher, at about 34.4 GB, as shown in Figure 2c.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a heuristic-based approach to the re-
source allocation problem in a cloud-native setting and reduces
it to an optimization problem to minimize latency and GPU
space utilization. We discuss current approaches for distributed
model training and how the resource allocation process be-
comes cumbersome for large models. This motivates the need
for a heuristic-based resource allocation strategy. Suppose we
train a neural network to optimize the loss function shown
in Equation 1; training such a model requires many sub-
graphs, Ej , which is impractical to train through a brute-force
approach. Unless the GPUs communicate on the same cluster,
any communication introduces latency overheads. Training the
model in a supervised setting also requires training labels
to calculate the loss. However, as our problem lacks labels,
we explore unsupervised and greedy approaches to optimize
this loss function. Reinforcement learning algorithms learn
to navigate through complex environments without needing
labeled data and purely through exploration while trying to
optimize a long-term reward function. Similarly, unsupervised
learning algorithms can learn correlations between model
architectures and compute requirements. Our future work will
utilize reinforcement learning algorithms to solve the cloud-
native resource allocation problem.
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